Combined gas law:

Avogadro's law:

$$
\begin{aligned}
& \frac{P V}{T}=\text { constant }\left[\begin{array}{l}
\text { Must use ABSOLUTE } \\
\text { temperature units! }
\end{array}\right. \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \begin{array}{l}
\text { Must use ABSOLUTE } \\
\text { temperature units! } \\
\text { amount (moles) ot gas must be bi l }
\end{array}
\end{aligned}
$$

- a mole of any gas at the same conditions has the same volume.

1 mol gas molecules@ $0^{\circ} \mathrm{C}$ and 1 atm

$$
\text { Volume }=22.4 \mathrm{~L}
$$

"STR"
Standard Temperature and Pressure

Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \left\lvert\, \begin{array}{l}
V_{1}=3.5 \mathrm{~L} \\
T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} \\
V_{2}=? \\
T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K} \\
\frac{3.5 \mathrm{~L}}{30.2 \mathrm{~K}}=\frac{V_{2}}{268.2 \mathrm{~K}} \\
3.1 \mathrm{~L}=V_{2} \text { at }-5.0^{\circ} \mathrm{C}
\end{array}\right.
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C, what is the pressure of the gas in the piston?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& P_{1}=1.00 \mathrm{~atm} \\
& V_{1}=2.25 L \\
& P_{2}=\text { ? } \\
& T_{1}=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \quad T_{2}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{~K} \\
& \frac{\left(1.00 \mathrm{~atm}_{\mathrm{m}}\right)(2.25 \mathrm{~L})}{(298.2 \mathrm{k})}=\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{k})} ; P_{2}=2.30 \mathrm{~atm}
\end{aligned}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\begin{aligned}
& \hat{\mathrm{N} \mathrm{O}_{2}} \\
& \mathrm{O}_{2}: 32.0 \circ \mathrm{og} \mathrm{O}_{2}=\text { mol } \mathrm{O}_{2} \quad \begin{array}{l}
* \text { Volume of a } 10^{\prime} \times 10^{\prime} \times 8^{\prime} \\
\text { room }
\end{array} \\
& \hline
\end{aligned}
$$

1 - Use the ideal gas equation ($\mathrm{PV}=\mathrm{nRT}$) to find MOLES of oxygen gas.
2 - Convert moles oxygen gas to mass using FORMULA WEIGHT.

$$
\begin{array}{c|ll}
n=\frac{P V}{R T}
\end{array} \left\lvert\, \begin{array}{ll}
V=22650 \mathrm{~L} & T=25.0^{\circ}=298.2 \mathrm{~K}
\end{array}\right.
$$

(1) $\left.n_{\mathrm{O}_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{l})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{Hf}}\right)(298.2 \mathrm{k})}=1092.22235\right) \mathrm{mol} \mathrm{O}_{2}$
(2) $1092.222357 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{gO}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=3500 \mathrm{~g} \mathrm{O}_{2} \sim 7716$

CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.0 grams sodium bicarbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium bicarbonate to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to volume. Use IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mal} \mathrm{NaHCO}_{3} \text { (2) } 2 \mathrm{~mol} \mathrm{NaHCO}_{3}=2 \mathrm{~mol} \mathrm{NO}_{2} \\
& 25.0 \mathrm{~g} \mathrm{NaHCO} \\
& 2 \times \frac{\mathrm{mol} \mathrm{NaHCO}}{3} \\
& 84.00)_{\mathrm{gNaHCO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{2 \mathrm{~mol}_{4} \mathrm{NHCO}_{3}}=0.2975942481 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } P V=n R T \quad n=0.2975942481 \mathrm{~mol} \mathrm{CO} 2 \quad P=0.950 \mathrm{adm} \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{l}
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\text { mol.h }} \\
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}\right.
\end{aligned}
$$

144
What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} U_{2}}{T_{2}} \left\lvert\, \begin{array}{ll}
P_{1}=0.950 \mathrm{~atm} & P_{2}=1 \mathrm{~atm} \\
V_{1}=7.67 \mathrm{~L} & V_{2}=? \\
T_{1}=298.2 \mathrm{k} & T_{2}=273.2 \mathrm{~K} \\
\frac{(0.950 \mathrm{arm})(7.67 \mathrm{~L})}{(298.2 \mathrm{Lr})} & =\frac{(1 \mathrm{arm}) V_{2}}{273.2 \mathrm{~L}} \\
\begin{array}{l}
6.67 \mathrm{~L} \\
\text { atsTP }
\end{array} & =V_{2}
\end{array}\right.
\end{aligned}
$$

Alternative solution: Use the number of moles we previously calculated and plug into PV=nRT with the STP temperature and pressure. You'll get the same answer as we got above!

