${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=\mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY ( 6.00 M HCl )
(1)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \quad \mathrm{Na}-2 \times 22.99 \\
& \mathrm{C}-1 \times 12.01 \\
& \mathrm{O}-\frac{3 \times 16.00}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\operatorname{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}
\end{aligned}
$$

$$
\left.25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{a}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{mo}\right) \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

(2) $2 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

${ }^{102}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaCl}_{4}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY ( 6.00 M HCl )
(3) $6,00 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \mathrm{of} 6.06 \mathrm{M} \mathrm{HCl}
$$

Since the problem specifies that the answer should be in mL, we'll convert our final answer from liters to mL ...

$$
\begin{aligned}
& m \mathrm{~L}=10^{-3} \mathrm{~L} \\
& 0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \mathrm{of} 6.00 \mathrm{MHCl}
\end{aligned}
$$

103

$$
\underset{\substack{42.081 \\ \text { propylene }}}{\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~mol}}+6 \mathrm{NO} \longrightarrow 4{\underset{c}{\text { acrylonitrile }}}_{53.064 \mathrm{~g} / \mathrm{mdl}}^{\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}+
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert 651 g propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol}\left(3 \mathrm{H}_{3} \mathrm{~N}\right.$
(3) $53.064 \mathrm{~g}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{molC}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
6 \mathrm{Slg}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.08 \mathrm{IgC}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{mul}_{3} \mathrm{H}_{6}} \times \frac{\mathrm{S}_{3} .064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{molC}_{3} \mathrm{H}_{3} \mathrm{~N}}=821 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}
$$

104

$$
\begin{aligned}
& \text { IS1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permanganate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permanganate to volume. Use MOLARITY. ( 0.250 M )
(1) $151.90 \mathrm{geSO}_{4}=\mathrm{malFeSO}_{4}$ (2) $10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{~K} \mathrm{MnO} 4$
(3) $0.250 \mathrm{mulh} \mathrm{MnO}_{4}=\mathrm{L}$

$$
3.36 \mathrm{FeSO}_{4} \times \frac{\mathrm{mulFeSO}_{4}}{1 \mathrm{SI}_{\mathrm{g}} .9 \mathrm{gFSS}_{4}} \times \frac{2 \mathrm{mul}^{2} \mathrm{KMnO}_{4}}{10 \mathrm{mul}_{4} \mathrm{FeSO}_{4}} \times \frac{\mathrm{L}}{0.2 \mathrm{SOmol} \mathrm{KMnO}_{4}}=0.0177 \mathrm{~L}
$$

Since the problem requests the answer in milliliters, convert ...

$$
0.0177 \mathrm{~L} \times \frac{m L}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \mathrm{of} 0.250 \mathrm{~m} \mathrm{KMnO}_{4}
$$

