Measurements

Measurements are comparisons of properties against accepted standards, called units.

ENGLISH / US SYSTEM OF UNITS:

$$
\begin{gathered}
1 \text { foot }=12 \text { inches } 1 \text { yard }=3 \text { feet } 1 \text { mile }=1760 \text { yards } \\
5280 F t=1 \text { mile }
\end{gathered}
$$

So what's the problem?
The English system of unit is hard to use. Every relationship between each size of unit must be memorized, and each kind of unit has its own separate relationship!

English units are nonstandard and difficult to use. Solution?
THE METRIC SYSTEM

Metric Base Units:

Length	meter	m
Mass	kilogram	kg
Temperature	Kelvin	K
Time	second	s

All metric units are made up of COMBINATIONS of BASE UNITS!
*we usually treat the gram as if it's the base unit for mass!

- One meter is approximately 3.3 feet.
- One kilogram is approximately 2.2 pounds.

What
about

Metric units may be made larger or smaller by adding PREFIXES.
A few common metric prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
mali-	10^{-3}	m
micro-	10^{-6}	μ
Smaller units		
Applying prefixes		

MEMORIZE the common metric prefixes listed in the study guide

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
\begin{aligned}
& K=10^{3}(1000) \\
& \left.S_{0} 10\right] \mathrm{hm}_{1}
\end{aligned}
$$

By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?
$C=10^{-2} \quad(1 / 100)$

- are units that are made up of combinations of metric base units with each other and/or with prefixes
velocity: $\frac{\text { miles }}{h_{r}} \frac{k m}{h r} \quad\left(\frac{m}{s}\right) \quad \frac{\text { length }}{\text { fime }}$
Two derived units are particularly important in general chemistry:

1) VOLUME
2) DENSITY

VOLUME

$$
\text { VOLUME }=L \times W \times H
$$

$H(m)$
What are the units of volume in the metric system?

$$
\begin{aligned}
\text { VOLUME } & =\text { meters } x \text { meters y meters } \\
& =m^{3} \text { ("cubic metes") }
\end{aligned}
$$

Problem: The cubic meter is a LARGE unit - too large for laboratory or medical-scale work.

We will need to scale this unit down for lab work!

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit For volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use millililiters (mL)

"cc"
cubic centimeter
$=$
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3} L \\
& - \text { or } \\
& 1000 m L=1 L
\end{aligned}
$$

DENSITY

- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\begin{aligned}
& \text { Density }=\frac{\text { mass }}{\text { Volume }} \\
& \text { What are the metric units of DENSITY? } \\
& \text { TENS|TY }=\frac{\mathrm{N}_{3}^{3}}{m^{3}} \text { sase unit of MASS }
\end{aligned}
$$

Like the cubic meter itself, this unit is not usually used in the chemistry lab.

1) The cubic meter is too large.
2) The kilogram is too large as well! Typical balances used to measure mass in the lab have capacities lower than a kilogram (Ours can hold about 200g!)

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \quad\left(\frac{g}{c^{3}}\right)\left(\frac{g}{c c}\right)
$$

A useful density to remember: WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$
... of a liquid

4) Subtract to find mass of liquid

$$
\begin{array}{r}
130.559 \\
-\quad 97.359 \\
\hline 33.209
\end{array}
$$

2) Fill cylinder and measure volume of liquid
volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\text { mass }=130.55 \mathrm{~g}
$$

5) Density = mass liquid / volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

11 ...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.

$$
\text { volume }=25.0 \mathrm{~mL}
$$

3) Put object into cylinder, record new volume
volume $=26.6 \mathrm{~mL}$
4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object / volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \quad 9}{1.6} \mathrm{~mL} \\
& =G .1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

