${ }^{174}$ Take 100. mL of the previous buffer (0.050 M fris / 0.075 M fris- HCl), and add 5.0 mL of 0.10 M HCl . What is the pH of the mixture?

The HCl should react with basic component of the buffer (fris), and change it to its conjugate acid
... so we need to find out the NEW concentrations of each species in the system.

* Solution volume is now 105 mL (100 mL of buffer plus 5 mL of Cl)

$$
p H \approx 8.06+10 g\left(\frac{0.04285) 3 \mathrm{~m}}{0.0761905 \mathrm{~m}}\right)=\square .8 \left\lvert\, \begin{aligned}
& \text { The original } \mathrm{pH} \text { was } \\
& 7.88, \text { so the pH } \\
& \text { dropped by } \\
& 0.07 \mathrm{pH} \text { units. }
\end{aligned}\right.
$$

${ }^{175}$ Compare this 0.07 unit pH change with adding 5.0 mL of 0.10 M HCl to $100 . \mathrm{mL}$ of pure water.
(We're just diluting the acid...)

$$
\begin{aligned}
& m_{1} v_{1}=m_{2} v_{2} \\
& (0.10 \mathrm{~m})(5.0 \mathrm{~mL})=m_{2}(105 \mathrm{ml}) \\
& 0.0047619 \mathrm{~m}=m_{2}
\end{aligned}
$$

Since this is a strong acid, hydronium ion concentration equals nominal acid concentration:

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =0.0047619 \mathrm{M} \\
\mathrm{pH} & =2.32 \quad \begin{array}{l}
\text {... which is a change of } 4.68 \mathrm{pH} \text { units } \\
\text { from water's original } \mathrm{pH} \text { of } 7.00!
\end{array}
\end{aligned}
$$

INDICATORS

-Instead of using a pH meter to monitor acidity, we may choose to use an acid-base INDICATOR.

- Acid-base indicators are weak acids or weak bases which are highly colored.
- The color of the undissociated indicator MUST BE DIFFERENT than the color of the dissociated form!

$$
\mathrm{HA}_{\mathrm{RD}}^{\mathrm{RD}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+A^{\text {BuI }}
$$

The indicator must be present in very low concentrations so that the indicator's equilibrium DOES NOT CONTROL the pH of the solution!

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

Look at the Henderson-Hasselbalch equation - we want to know how much of the red form and how much of the blue form are present!

$$
p H=p k_{a, \text { ina }}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)
$$

When does the color of the indicator change?
IF the pH is $\ll \mathrm{pKa}$, then the log term above must be both large AND negative!

- What color is the solution?

$$
[H A] \gg\left[A^{-}\right] \ldots \text { and the solution is RED. }
$$

If the pH is >> pKa , then the log term above must be both large AND positive!

- What color is the solution?

$$
\left.\left[A^{-}\right] \gg H A\right] \quad \ldots \text { and the solution is BLUE }
$$

- So, the color changes when the pH of the solution is near the aKa of the indicator, BUT we can only DETECT the change when enough of the other form is present.
${ }^{178}$ Titration
- also called volumetric analysis. See the end of Ebbing chapter 4 for more details.
- frequently used to determine concentration of unknown acids or bases.
- typically react a basic sample with a STRONG ACID, or an acidic sample with a STRONG BASE

Example:
Titrate 20 mL of vinegar (acetic acid) with 0.35 M NaOH . Let's study this titration. What happens to the pH of the solution during the titration? How does an indicator work?

Vinegar is typically about 0.88 M acetic acid. What would the EQUIVALENCE POINT (the point where we react away all of the acetic acid) be?

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 20.0 \mathrm{~mL} \text { of } 0.88 \mathrm{~m} \mathrm{HC} 2 \mathrm{H}_{3} \mathrm{O} \quad w / 0.3 \mathrm{~S} \mathrm{M} \mathrm{NaH} \\
& 20.0 \mathrm{~mL} \times \frac{0.88 \mathrm{~mol}}{L}=17.6 \mathrm{mmol} \mathrm{MC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& 17.6 \mathrm{mmal} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \times \frac{\mathrm{mol} \mathrm{NaOH}}{\mathrm{mmHC} \mathrm{H}_{2} \mathrm{H}_{2}} \times \frac{L}{0.35 \mathrm{mal} \mathrm{NaOH}}=\begin{array}{l}
50.3 \mathrm{~mL} \\
0 \mathrm{~L} \\
\mathrm{NaOH}
\end{array}
\end{aligned}
$$

But how do we tell the titration is over if we don't already know the concentration of the acid?

In the lab, we have used phenolphthalein indicator for vinegar titrations. Phenolphthalein changes from colorless to pink over the range of about pH 9 to pH 10. How does this indicator show where the endpoint is?

Let's look at the pH of the solution during the titration- that may show us what's going on!
${ }^{180}$ Titration curve for the titration of 20 mL of 0.88 M acetic acid with 0.35 M sodium hydroxide

buffer region: With a moderate amount of NaOH added, we have a solution that contains significant amounts of both acetic acid and its conjugate base (acetate ion). We have a buffer.

$$
\begin{aligned}
\mathrm{NaOH}_{4}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
\text { weak } \\
\text { acld }
\end{aligned} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

The equivalence point:

Equivalence point: We're reacting away more and more of the original acetic acid and converting it to acetate ion. At the equivalence point, all of the acetic acid has been converted, and we have only a solution of acetate ion.

Let's calculate the pH at the equivalence point.

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

20.0 mL of $0.88 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}$ w/ 0.35 M NaOH

$$
20.0 \mathrm{~mL} \times \frac{0.88 \mathrm{~mol}}{L}=17.6 \mathrm{mmol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

Once you figure out the concentration of acetate ion, this is simply the calculation of the pH of a salt solution!

init			
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]$	0.250	$-x$	0.250^{-x}
$\left[\mathrm{OH}_{4}^{-}\right]$	0	$+x$	x
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	0	$+x$	x

$$
\begin{aligned}
& \begin{array}{l}
17.6 \mathrm{mmol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \times \frac{\mathrm{mol} \mathrm{NaOH}^{2}}{\mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}} \times \frac{\mathrm{L}}{0.35 \mathrm{mul} \mathrm{NaO4}}=\begin{array}{l}
50.3 \mathrm{~mL} \\
0 \mathrm{~m} \\
0.3 \mathrm{sm} \\
\mathrm{NaOH}
\end{array} \\
\text { At the equivalence point, we have } 17.6 \mathrm{mmol} \text { of ACETATE ION in } \\
0.3(20+50.3) \mathrm{mL} \text { of solution. }
\end{array} \\
& 70.3(20+50.3) \mathrm{mL} \text { of solution. }
\end{aligned}
$$

What about that phenolpthalein indicator?

Near the equivalence point, a very small volume of base added (a drop!) will change the pH from slightly over 6 to near 12. Since phenolphthalein changes colors at about pH 9-10, we can stop the titration within a drop of the equivalence point.

184 Another interesting point: The halfway point

What's special about it? It's the point where we have added half the required base to reach the equivalence point

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaCl}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 17,6 \mathrm{mmol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { Add } 25.15 \mathrm{~mL} \text { base } \\
& \text { initially } \left\lvert\, 25.15 \mathrm{mLx} \frac{.350 \mathrm{mul}}{L}=8.8025 \mathrm{mnul} \mathrm{NaOH}\right.
\end{aligned}
$$

8.8 millimoles is also the amount of acid left, and the added base gets converted to acetate ion!

The total volume is 25.15 mL , and both the acid and base are present at the same concentration. We have a BUFFER.
Find the pH of this buffer using the Henderson-Hasselbalch equation.

$$
\begin{aligned}
p H=p h^{\prime} a_{1} H_{2} \mathrm{H}_{3} \mathrm{O}_{2}+ & \log \left(\frac{\left[\frac{\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)_{1}}{}\right. \\
& =\text { O, since the ratio }=1
\end{aligned}
$$

At the halfway point, the pH = pKa of the acid!

Useful for finding acid ionization constants!

SOLUTION: Homogeneous mixture of substances Solutions contain:
SOLUTE: Component(s) of a solution present in small amount SOLVENT: Component of a solution present in greatest amount

We usually call water the solvent in aqueous mixtures, even
if the water is present in smaller amount than another component
SOLUBILITY: The amount of a solute that will dissolve in a given volume of solvent

SATURATED SOLUTION: Contains the maximum amount of solute that it is possible to dissolve in a given volume of solvent!

A SATURATED SOLUTION is a solution where dissolved solute exists in an EQUILIBRIUM with undissolved solute!

Example: Consider a saturated solution of silver chloride:

$$
\mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}\left(a_{q}\right)+\mathrm{Cl}^{-}\left(a_{q}\right)
$$

At equilibrium, the rate of dissolving equals the rate of crystallization!

$$
\begin{aligned}
& \mathrm{Ag}\left(1(s) \rightleftharpoons \mathrm{Ag}^{+}\left(a_{q}\right)+\mathrm{Cl}^{-}\left(a_{q}\right)\right. \\
& K_{c}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10}
\end{aligned}
$$

... What does this equilibrium constant tell us? That silver chloride isn't very soluble!

$$
\begin{aligned}
& { }^{\prime \prime} \mathrm{Ag}_{g}\left(1(s) \geqslant \mathrm{A}_{g}^{+}\left(a_{q}\right)+\mathrm{Cl}^{-}\left(a_{q}\right)\right. \\
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}_{\mathrm{g}}{ }^{+}\right]\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

飞 This equilibrium constant is given a special name - the SOLUBILITY PRODUCT CONSTANT - because the equilibrium expression for the dissolving of a salt always appears as a PRODUCT of the concentrations of the ions in the compound!

Remember, Kp is an equilibrium constant, so everything that applies to equilibrium constants applies to the solubility constant - including what to do with coefficients:

What is the solubility product constant expression for calcium phosphate?

$$
\begin{aligned}
& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2 t}\left(\mathrm{a}_{4}\right)+2 \mathrm{PO}_{4}^{3-}(\mathrm{an}) \\
& \mathrm{H}_{\mathrm{Sp}}=\left[\mathrm{Ca}^{21}\right]^{3}\left[\mathrm{PO}_{4}^{3-\}^{2}}\right.
\end{aligned}
$$

You can calculate the solubility of a compound if you know Ksp!
Calculate the solubility (in g / L) of lead $(I I)$ iodide at 25C. (see $\rho A-1 S$ in book)

$$
\begin{aligned}
& K_{s p}=6 . S \times 10-F W=461.0 \mathrm{~g} / \mathrm{mol} \\
& P b I_{2}(s) \rightleftharpoons P b^{2+}\left(s_{4}\right)+2 I^{-}\left(\mathrm{m}_{4}\right) ; \mathrm{K}_{s p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}=6 . s_{\times 10}-9
\end{aligned}
$$

Species	[Initial $]$	D	$\left[G_{G}\right.$ librium $]$
Pb^{2+}	0	$+X$	x
I^{-}	0	$+2 x$	$2 x$
$(x)(2 y)^{2}$	$=6.5 \times 10^{-9}$		
$4 x^{3}$	$=6,5 \times 10^{-9}$		
x	$=0.0011756673=\left[\mathrm{Pb}^{2+}\right]=\left[P b I_{2}\right]$ in solution		

So, solubility is $0.0011756673 \mathrm{MPbI}\left(\frac{\mathrm{mol}_{2} \mathrm{~Pb} \mathrm{In}_{n}}{L}\right)$

$$
\frac{0.0011756673 \mathrm{~mol} \mathrm{~Pb} I_{2}}{L} \times \frac{461.0 \mathrm{~g} \mathrm{PbI}}{\mathrm{mul} \mathrm{P/} \mathrm{P}_{2}}=0.54 \mathrm{~g} \mathrm{PbI} \mathrm{P}_{2} \mathrm{f}
$$

A common concentration unit is "ppm", which stands for "parts per million". For dilute aqueous solutions, this is equal to mg / L. So this solution is 540 ppm lead(II) iodide.

