- resist pH change caused by either the addition of strong acid/base OR by dilution Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} base and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
\end{gathered}
$$

(1) Take log of both sides
(2) Multiply by - 1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$[A-] \ldots$ from the salt $[H A] \ldots$ from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

ex: acidic buffer

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{pH}=\mathrm{pha}_{4 \mathrm{HC}_{2} \mathrm{H}_{2}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)
\end{aligned}
$$

ex: basic buffer

$$
\begin{aligned}
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \quad \mathrm{pH}=\mathrm{pKa}_{, \mathrm{NH}_{4}^{+}}+\log _{y}\left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& \quad p W_{a}+\rho K_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=K_{w}
\end{aligned}
$$

${ }^{170}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride ($F W=53.492 \mathrm{~g} / \mathrm{mol}$) and 29 mL of 18.1 M ammonia diluted to $150 . \mathrm{mL}$ with water.

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

base: NH_{3} acid: $\mathrm{NH}_{4}{ }^{\circ} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
To use the H-H equation, we need toknow: (1) The concentration of both the acidic and basic species. (2) pKa for ammonium ion.
$\left[\mathrm{NH}_{3}\right]=? \quad M_{1} V_{1}=M_{2} V_{2}$ (Ammonia was DILUTED to 150. mL)

$$
(18,3 \mathrm{~m})(29 \mathrm{ml})=m_{2}(150 \mathrm{ml})
$$

$$
3.499333333 \mathrm{M}=\mathrm{M}_{2}=\left[\mathrm{NH}_{3}\right]
$$

$$
\begin{aligned}
& {\left[\mathrm{NH}_{4}+\right]=\text { ? }} \\
& 30.2 \mathrm{~g} \mathrm{NHyll} \times \frac{\mathrm{mul} \mathrm{NHall}^{53.492 \mathrm{~g} \mathrm{Nall}}}{53.5645704031 \mathrm{mul} \mathrm{NH}_{4} \mathrm{Cl}} \\
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=\frac{0.5645704031 \mathrm{mu}\} \mathrm{NH}_{4} \mathrm{Cl}}{0.150 \mathrm{~L}}=3.763802687 \mathrm{M} \mathrm{NH}_{4}{ }^{+}} \\
& \text {p胡? ; } K_{b, N H 3}=1.8 \times 10^{\circ} ; p K_{b}=4.74: p W_{a}=14-4.74=9.26 \\
& p H=9.26+\log \left(\frac{3.499333333}{3.76380268 ?}\right)= \\
& =9.26+-0.032=9.23
\end{aligned}
$$

${ }^{71}$ BUFFER SELECTION

- Buffer pH is controlled by the pKa of the acidic species in the buffer.

$$
p H=p K_{a_{\text {, acidil }}}+\log \left(\frac{\text { [basic species }]}{\text { [acidic species] }]}\right)
$$

- Choose a buffer system so that the desired pH is within +/- 1 pH unit of the pKa
- You also need to ensure that the components of the buffer do not interact with your chemistry!

BUFFER PREPARATION

- many buffers are prepared by mixing specific amounts of both components of the Buffer system (acid / conjugate base or base / conuugate acid)

Some buffer "recipes" call for making the conjugate ion FROM the weak

$$
\begin{aligned}
& \text { acid or base ... by adding a STRONG acid or base! } \\
& \qquad \mathrm{NH}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}
\end{aligned} \begin{aligned}
& \text { The reaction of the strong } \\
& \text { acid with the weak base } \\
& \text { goes essentially to } \\
& \text { completion! }
\end{aligned}
$$

If you have more ammonia than nitric acid, you will end up with a solution containing a significant amount of both ammonia and ammonium ion ... a buffer!

BUFFER CAPACITY

- A buffer is good only as long as there is a significant concentration of both the acidic and basic species
- buffer capacity: how much acid or base can a buffer resist before losing its ability to buffer
- Buffer pH depends on the RATIO of acid to base!
 Ratio determines pH; the actual concentrations don't!
- So, if you make a buffer with 1.0M HA and 1.0M A-, it will have the same pH as a buffer with 2.0M HA and 2.0M A- but the 2M buffer will have a higher BUFFER CAPACITY it will resist more additions of acid or base.

173
Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane

C1- pKa=8,06
tris base
tris- HCl (conjugate acid of tris base)
Calculate the pH of a buffer made from 50 mL of 0.10 M tris and 50 mL of 0.15 M tris- HCl . Assume volumes add.

$$
\begin{aligned}
& p H=p K_{a, a c i d i l}+\log \left(\frac{\text { [basicspecies }]}{\text { [acidic species] }}\right) \\
& \text { [tris]: } M_{1} V_{1}=m_{2} V_{2}(0.10 \mathrm{~m})(50 \mathrm{mc})=m_{2}(100 \mathrm{mc}) \\
& {[t-i s]=0.050 \mathrm{~m}} \\
& {[\text { rais }-H 6]:(0.15 \mathrm{~m})(50 \mathrm{~mL})=m_{2}(100 \mathrm{~mL})} \\
& {[\text { tris }-H / 1]=0.075 \mathrm{~m}} \\
& p H=8.06+\log \left(\frac{0.050}{0.075}\right)=7.88
\end{aligned}
$$

