157$.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed by the salt to see if they have acidic or basic properties.
Na^{+}: Not B -L acid, since there is no $\mathrm{H}+$ to donate. Not likely to be B-L base due to the - positive charge ... which would repel H+
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$; This species does have hydrogen atoms, but it's more likely to be a B-L base due to the negative charge. (Would attract $\mathrm{H}+$)

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\text { LACETIC ACID: This is a WEAK ACID, meaning that }_{\sim}^{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}+\mathrm{OH}^{-}}{ } \\
& \text {it's stable in water. Since the product of the } \\
& \text { reaction is stable in water, we expect acetate } \\
& \text { ion to function as a base. } \\
& K_{b}=\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}_{1}^{-}\right] \quad \begin{array}{l}
\text { Value for } \mathrm{Kb} \text { ? As before, we don't } \\
\text { find a Kb for acetate in or }
\end{array} \\
& \text { find a } \mathrm{Kb} \text { for acetate in our } \\
& \text { chart on A-14, so we look for a } \\
& \text { Ka for the conjugate - acetic } \\
& \text { acid. } \\
& \mathrm{Kn}_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.7 \times 10^{-5} \text {; so } \mathrm{K}_{5}=\frac{1.0 \times 10^{-\mathrm{k}}}{1.7 \times 10^{-5}}=5.89 \times 10^{-10}
\end{aligned}
$$

158

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \mathrm{K}_{3}=\frac{\left[\mathrm{HC} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.89 \times 10^{-10}
\end{aligned}
$$

Now, we set up and solve this B-L BASE equilibrium to find the pH

For comparison:
0.100 M sodium acetate, $\mathrm{pH}=8.88$
0.100 M ammonia, $\mathrm{pH}=11.13$
0.100 M NaOH (strong base), $\mathrm{pH}=13.00$

The acetate ion is basic, but it's a very weak base!

160

$$
\begin{aligned}
& \mathrm{O} .100 \mathrm{M} \mathrm{NaCl} \text {, Find } \mathrm{pH} \\
& \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed in solution to see if they have acidic or basic properties.
$N_{a}{ }^{+}$: Not B-L acid, since there is no H+ to donate. Not likely to be B-L base due to the positive charge ... which would repel H+

C1 : Not B-L acid. Is is a B-L base? (It *is* negatively charged!)

$$
\begin{aligned}
& \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\sim}{\sim} \mathrm{LCl}_{\text {HYDROCHLORIC ACID: This is a STRONG ACID. }}^{\sim} \\
& \text { This means that } \mathrm{HCl} \text { is not stable in water; ital } \\
& \text { immediately lose any acquired protons! We } \\
& \text { conclude that chloride ion is NOT an } \\
& \text { effective B-L base. }
\end{aligned}
$$

Since neither sodium nor chloride ions affect pH , the pH of the solution is set by the water equilibrium. Therefore, the pH of the solution is $7.00 \ldots$... just like distilled water.

161 POLYPROTIC ACIDS
Find pH of $\mathrm{O}_{1} 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a_{3}}=4.8 \times 10^{-13}
$$

The first dissociation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}=6.9 \times 10^{-3} \\
& \mathrm{~K}_{4}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	[Initial]	Δ	[Equilibrium]
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.10-x$
x^{2}			

$$
\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \\
& \qquad \begin{array}{l}
\text { assume } x \ll 0.10 \\
\text { so } 0.10-x
\end{array} 0.10
\end{aligned}
$$

$$
\text { So, } p H=-\log (0.0262678511)
$$

$$
p H=1.58
$$

${ }^{163}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate (FW=80.052 g/mol) solid into enough water to make 250. mL of solution.
What's the nature of ammonium nitrate? $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}{ }^{-}$

$$
\begin{aligned}
& \mathrm{NO}_{3}^{-} ; \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \text {<-- NITRIC ACID is a strong acid, so the } \\
& \text { nitrate ion should be NEUTRAL } \\
& \mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \text {<-- AMMONIA is a weak base, so the } \\
& \text { ammonium ion should be ACIDIC! } \\
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \mid \text {Ka value for ammonium ion? Page A-13 doesn't have } \\
& K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]} \\
& \text {it, but page A-14 has Kb for the conjugate. ammonia: } \\
& K_{b_{, N H_{3}}}=1.8 \times 10^{-s} \\
& \text { So } \mathrm{Kan}_{\mathrm{a}, \mathrm{NH}_{4}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.56 \times 10^{-10}
\end{aligned}
$$

To solve the equilibrium problem, we need to find the nominal concentration of our ammonium nitrate.

$$
\begin{aligned}
& 80.052_{\mathrm{g} \mathrm{NH}_{4} \mathrm{NO}_{3}}=\mathrm{m} \mathrm{\nu}_{\nu} \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& 3.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\text { mol } \mathrm{NHNO}_{3}}{80.052 \mathrm{gNH}_{4} \mathrm{NO} 3}=0.0374756408 \mathrm{~mol}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3} \\
& {\left[\mathrm{NH}_{4} \mathrm{NO}_{3}\right]_{\text {numina l }} }=\frac{0.0374756408 \mathrm{~mol} \mathrm{NHyNO}_{3}}{0.250 \mathrm{~L}}= \\
&=0.3499025633 \mathrm{MNHyNO}
\end{aligned}
$$

164

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}
\end{aligned}
$$

Species	$[$ Initial $]$	Δ	[Equilibrium]
NH_{3}	0	$+X$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	x
$\mathrm{NH}_{4}{ }^{+}$	0.14990	$-X$	$0.14990-x$

Solve ...

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-x}=5.56 \times 10^{-10} \\
& \downarrow x<60.14990 \\
& \frac{x^{2}}{0.14980}=5.56 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=5.04
\end{aligned}
$$

... seems reasonable for a weakly acidic salt at moderate concentration.

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}\left(\mathrm{aq}_{q}\right)+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$
From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}+\mathrm{OH}^{\circ} ; \mathrm{Kb}_{5}=1.8 \times 10^{-5}
$$

Species	$[$ Initial $]$	Δ	$\left[F_{\text {quill librium }}\right]$
NH_{4}^{-1}	0.10	$+x$	$0.10+x$
OH^{-}	0	$+x$	x
NH_{3}	0.10	$-x$	$0.10-x$

$$
\begin{aligned}
& \mathrm{N}_{6}=\frac{\left[\mathrm{NH}_{4}+\right][04-]}{\left[\mathrm{NH}_{3}\right]} \\
& 1.8 \times 10^{-S}=\frac{(0.10+x)(x)}{(0.10-x)}
\end{aligned}
$$

Assume x is 5 mall

$$
0.10-x=0.10
$$

$$
\begin{aligned}
& 0,10-x=0,10 \\
& 0,10+x \approx 0,10
\end{aligned}
$$

$$
\frac{0.10 x}{0.10}=1.8 \times 10^{-5}
$$

$$
\begin{aligned}
& x=1.8 \times 10^{-5}=[04-3 \\
& \text { So, } P 04=4.74 \\
& p H=9.26
\end{aligned}
$$

The common-ion effect suppresses the ionization of ammonia, raising the pH relative to the original ammonia solution (11.13)

