

- "s" block: last electron in these atoms is in an "s" orbital!
- "p" block: last electron in these atoms is in a "p" orbital!
- "d" block: last electron in these atoms is in a "d" orbital

- To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

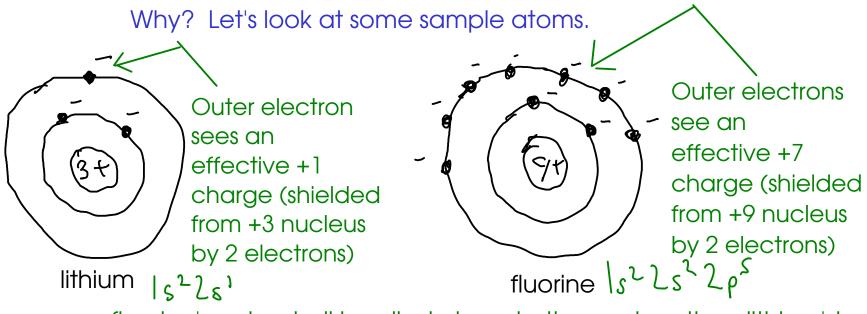
Example: Phosphorus (P):

Noble gas core notation for P:

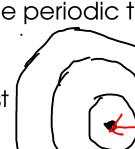
EXAMPLES: $F \left[s^{2} 2 s^{2} 2 \rho^{S} \right]$	Remember - valence electrons are ALL of the electrons in the outermost SHELL (n)! More that one subshell (I) may be included in the valence electrons
s 1s ² 2s ² 2p ⁶ 3s ²	when the +2 ion forms, while the 4s AND 3d electrons are lost to form the +4!
CI $ s^{2}2s^{2}2\rho^{6}3s^{2}3r^{5}$ CNe] $3s^{2}3\rho^{5}$ Ti $ s^{2}2s^{2}2\rho^{6}3s^{2}3r^{5}$	You can order the subshells in numeric order OR in filling order $p^{6}3d^{2}4s^{2}$ or $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{2}$
Se $ s^2 2s^2 2\rho^6 3s^6 3s^{10} 4s^2 4\rho^4$ $\int \int s^2 2s^2 2\rho^6 3s^2 3\rho^6 3s^{10} 4s^2 4\rho^4$ $\int \int Ar ^3 3s^{10} 4s^2 4\rho^4$ Noble gas core notation. Use the previous noble gas on the table, then add the electrons that it doesn't have to the end.	
Kr $[A_r] 3_{d_1} U_{d_2} U_{p_6}$ Sample f-block element $Ce: [Xe] 6s^2 Sd^1 4f^1$	

PERIODIC TRENDS

- Some properties of elements can be related to their positions on the periodic table.


ATOMIC RADIUS

- The distance between the nucleus of the atoms and the outermost shell of the electron cloud.

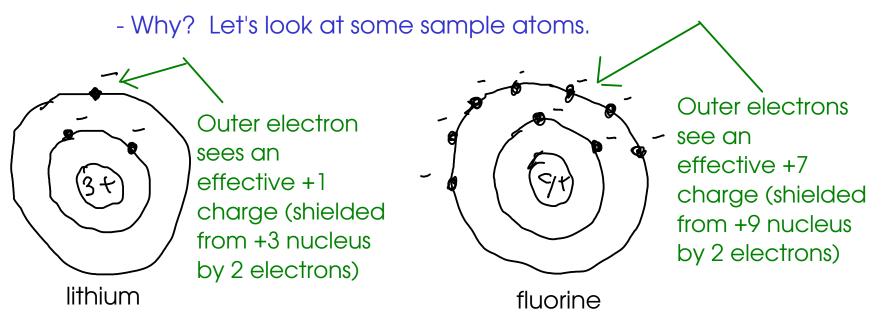

- Relates to the size of the atom.
- As you go DOWN A GROUP ($\sqrt{}$), the atomic radius INCREASES.

- Why? As you go down a period, you are ADDING SHELLS!

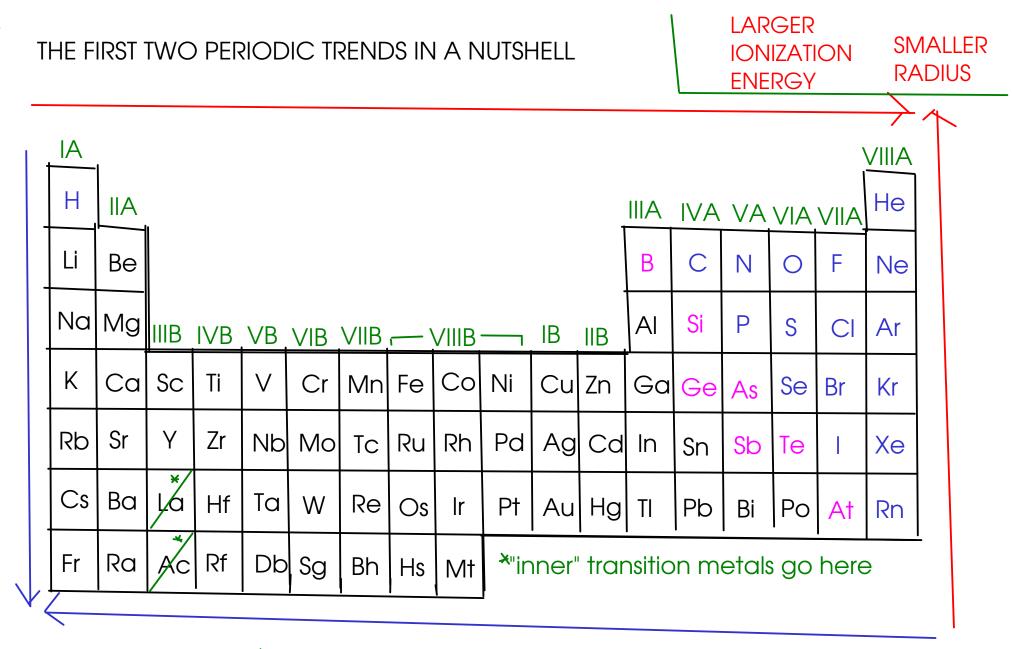
- As you go ACROSS A PERIOD (\longrightarrow), the atomic radius DECREASES

... so fluorine's outer shell is pulled closer to the nucleus than lithium's!

182


- The amount of energy required to remove a single electron from the outer shell of an atom.

- Relates to reactivity for metals. The easier it is to remove an electron, the more reactive the metal.


- As you go DOWN A GROUP (\int), the ionization energy DECREASES.

- Why? As you go down a period, you are ADDING SHELLS. Since the outer electrons are farther from the nucleus and charge attraction lessens with distance, this makes electrons easier to remove as the atoms get bigger!

- As you go ACROSS A PERIOD (\longrightarrow , the ionization energy INCREASES.

... since fluorine's outer electrons are held on by a larger effective charge, they are more difficult to remove than lithium's.

LARGER SMALLER RADIUS IONIZATION ENERGY

ELECTRON AFFINITY 184

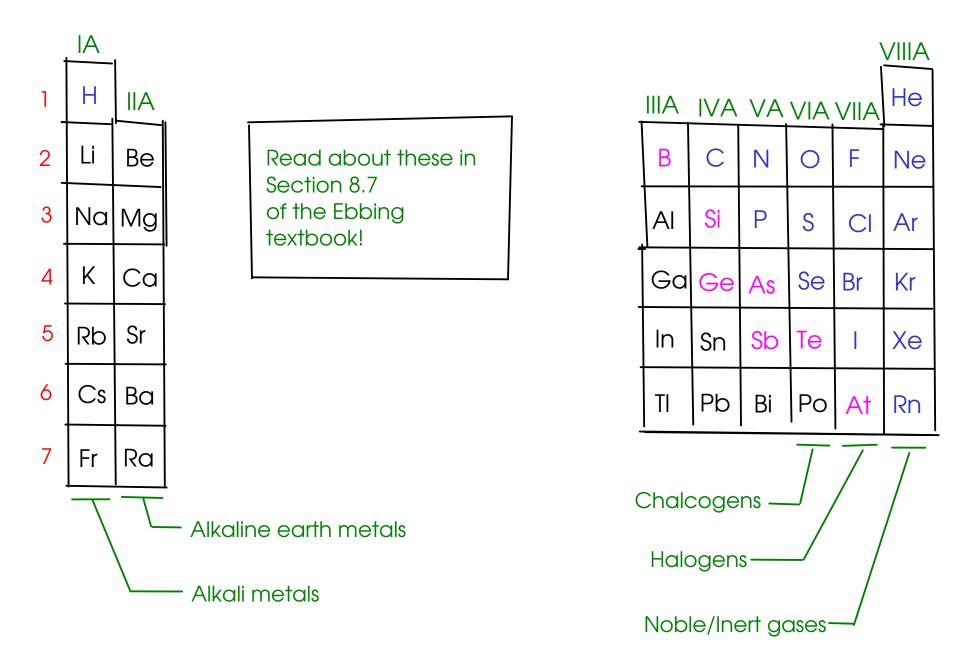
- the electron affinity is the ENERGY CHANGE on adding a single electron to an atom.

- Atoms with a positive electron affinity cannot form anions.
- The more negative the electron affinity, the more stable the anion formed!

- General trend: As you move to the right on the periodic table, the electron affinity becomes more negative.

EXCEPTIONS

- Group IIA does not form anions (positive electron affinity)! NS^2 valence electrons for Group IIA!


- To add an electron, the atom must put it into a higher-energy (p) subshell.

- Group VA: can form anions, but has a more POSITIVE electron affinity than IVA

 $NS^{2}Np^{3}$ valence electrons for Group VA! $\overline{}$ Half-full "p" subshell! To add an electron, must start pairing!

- Group VIIIA (noble gases) does not form anions full "s" and "p" subshells!

"MAIN" or "REPRESENTATIVE" GROUPS OF THE PERIODIC TABLE

186

The representative (main) groups GROUP IA - the alkali metals

nsi

- React with water to form HYDROXIDES

$$2M + 2H_2O \rightarrow 2MOH + H_2$$

alkali metals form BASES when put into water!

- Alkali metal OXIDES also form bases when put into water. (This is related to METALLIC character. The more metallic something is, the more basic its oxide. Nonmetals have ACIDIC oxides!) M_2O

- Physical properties: All of these elements are soft metals with relatively low melting points.

GROUP IIA - the alkaline earth metals

valence electrons:

ns

- May react with water in a reaction similar to the alkali metals, producing hydroxides and hydrogen gas. For some of the alkaline earth metals, this reaction takes place at a significant rate only at high temperatures..

- Form basic oxides, formula: MO

- These elements are soft and low-melting ... but harder and higher melting than alkali metals.

- The name "alkaline earth" comes from the observation that the "earths" (oxides) of these metals are basic.

valence electrons: $Ns^2N\rho'$

- most of the elements in this group are metals, but there is also a semiconductor (boron).

- The oxides of these elements are of the form M_2O_3

- oxides of boron are acidic (metalloids tend to behave more like nonmetals in the acidity of their oxides).

- Aluminum and gallium have AMPHOTERIC oxides (react as acids or bases), and the larger Group IIIA oxides are basic

- These elements do not react directly with water to make hydroxides, unlike Groups IA and IIA.

GROUP IVA

valence electrons NS^2Np^2

-contains some elements of each type: nonmetal, metalloid, and metal.

- oxides range from acidic to amphoteric, with formulas $MO_2 \circ r MO(c, Pb form both')$

- don't react with water to make hydroxides

valence electrons $NS^2N\rho^3$

-range from nonmetal to metallic, but with only one metal (bismuth).

- Oxides of group VA nonmetals are acidic, while the group VA metalloids have amphoteric oxides. Bismuth's oxide is basic

- Formulas of these oxides vary considerably, but the most common variants are: RO_2 , RO_3

GROUP VIA - the chalcogens

valence electrons

- Like Group VA, formulas of oxides of these elements vary. Common ones are: RO_{2} , RO_{3} - mostly nonmetals/metalloids, plus one metal (polonium). Oxides range from acidic to amphoteric.

- This group's name means - "ore producers" Many metal ores contain oxygen and/or sulfur!

electron configuration: $NS^2N\rho^5$

- react with water, but form ACIDS when they do so! (ex: chlorine and water make HCI and HOCI).
- Oxides of the halogens are not very stable, but they are acidic.
- nonmetals, exist primarily as DIATOMIC MOLECULES.
- halogens are very similar in their chemical reactions, even though their physical appearance varies considerably!
- This group's name means "salt formers" (think sodium chloride)

GROUP VIIIA - the noble or inert gases

electron configuration:

nsznpb

- characterized by their lack of chemical reactivity. The lighter noble gases have no known compounds, while the heavier ones sometimes form molecules with reactive elements like oxygen and fluorine.

- exist primarily as single (uncombined) atoms - NOT diatomic molecules like the halogens.