

$$Q_r + Q_w = 0$$
 $Q_w = m_w \times S_w \times \Delta T_w$
= (100g) (4.184 $\frac{7}{900}$) (38°C-25°C)
= 5439.2 J

To report the energy change in this reaction to others, we should express it in terms of heat transfer per mole of something. A different amount of reactant would have a different Q

Qrxn =
$$\frac{Qr}{mules A} = \frac{-5439.25}{0.20 mulA} = \frac{-271965}{mul A} = \frac{-27}{mul A}$$

This number is often called the "HEAT OF REACTION"

One problem ...

PATH. The amount of energy required for a process depends on how the process is carried out.

Example: Driving from Florence to Columbia. How much energy is required? (gas)

2000 Jeep Cherokee vs 2008 Toyota Prius. The Jeep will use much more fuel than the Prius even though they start and end from exactly the same place. So the fuel usage is what we call a <u>PATH FUNCTION</u>, while the location is a STATE FUNCTION.

- so the heat of reaction depends on how the reaction is done.

- we need (for reporting) some kind of standard condition. At constant pressure, we can define a state function called ENTHALPY (H)

H = U + PV $\triangle H = Q constant pressure$

 ΛH_{r}

... we record the "enthalpy change of reaction" in our data books.