Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \text { ? } \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-} \\
0.10 \mathrm{mHNO},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0,10 \mathrm{~m} \\
\mathrm{pH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{145}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5}(p \mathrm{~A}-14,6 b b \mathrm{ing} 9 \mathrm{~m})
$$

What is the pH ?

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& K_{b}=\frac{\left[\mathrm{NH}_{4}+\right][\mathrm{OH}]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-\mathrm{s}}
\end{aligned}
$$

We want to solve for HYDROXIDE ION concentration. since it's the only species in the equilibrium that is related to hydronium ion concentration (and therefore, pH)

Species	[Initial $]$	Δ	$\left[E_{\text {nuilibrim }}\right]$
$\mathrm{NH}_{4}{ }^{+}$	0	$+X$	X
OH	0	$+X$	X
NH_{3}	0.100	$-X$	$0,100-X$

$$
\frac{(x)(x)}{(0.100-x)}=1.8 \times 10^{-5}
$$

Solve for ' x '. This will give us the hydroxide ion concentration.

146

$$
\begin{aligned}
\frac{(x)(x)}{(0.100-x)} & =1.8 \times 10^{-5} \\
\frac{x^{2}}{0.100-x} & =1.8 \times 10^{-5}
\end{aligned}
$$

Be careful here! We have calculated the HYDROXIDE ION concentration. Since pH is related to HYDRONIUM ION concentration, we can't just take the negative log and call it the answer

Compare pH to the pH of an 0.100 M solution of the strong base NaOH : $\mathrm{pH}_{\mathrm{INH}_{3}}=11.13$

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {SO, } 0.120 \mathrm{MNaH},\left[\mathrm{NH}^{-}\right]=0.100 \\
& \text { oOH }=-\log _{10}[0,100)=1,00 \\
& p H=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)

