${ }^{138}$ (A) What is the concentration of hydronium ion in an aqueous solution whose pH is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
A)

$$
\mathrm{PH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\begin{array}{ll}
{\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]=10^{-10.50}} & {\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]=10^{-\mathrm{\rho H}}} \\
{\left[\mathrm{H}_{30^{+}}\right]=3.2 \times 10^{-11} \mathrm{M}} &
\end{array}
$$

B)

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& \left(3.2 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \mathrm{NaOH}_{\mathrm{O}} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& 1: 1 \text { rahiU of } \mathrm{NaOH}=\mathrm{OH}^{-} \text {, so } \\
& {[\mathrm{NaOH}]_{\text {nominal }}=3.2 \times 10^{-4} \mathrm{M} \quad(0.00032 \mathrm{~m})}
\end{aligned}
$$

139
What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution?
$\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}$

$$
M=\frac{\text { mol raoul }}{L \text { solution }} \leftarrow 0.500 \mathrm{~L}
$$

Before we can figure out pH , we need to know MOLAR
 CONCENTRATION of the NaOH ...

$$
\begin{aligned}
& 2.50 \text { g NaH } \times \frac{\mathrm{molNaOH}_{\mathrm{gan}}}{40.00 \mathrm{~g} \mathrm{NaOH}}=0.0625 \mathrm{mul} \mathrm{NaOH} \\
& M=\frac{0,06250 n 11}{0.500 L}=0,125 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

Since NaOH is a strong base, it completely ionizes ...

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \text {, So }\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]_{\text {numina }} \\
& {\left[\mathrm{OH}^{-}\right]=0.125 \mathrm{~m}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+9}\right]=8,0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}{ }^{-}\right]=1,0 \times 10^{-14}} \\
& \text { PH }=13.10 \\
& {\left[\mathrm{VH}_{3} 0+\right](0.125)=1.0 \times 10^{-14}}
\end{aligned}
$$

For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{A}^{-} \\
& \left.\quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
& \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{Base}]} \\
& \text { ionization }
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

142
Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{Na}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4.5 \times 10^{-4}
\end{aligned}
$$

Found on page

What is the pH of the solution?
A-14 in Ebbing

10th edition. These
K values are determined experimentally like other equilibrium constants.

To find pH , we need to determine the concentration of hydronium ion at equilibrium. This time, we cannot assume all the acid ionizes. We will solve the equilibrium to find out how much acid ionizes.

Species	[Imitin]	\triangle	$\left[F_{\text {quilbrium }}\right]$
$\mathrm{H}_{3 \mathrm{O}^{+}}$	O	$+X$	X
NO_{2}^{-}	0	$+X$	X
HNO_{2}	0.100	$-X$	$0.100-x$

$$
\frac{(x)(x)}{(0.100-x)}=4.5 \times 10^{-4}
$$

Look familiar? Very similar to the equilibrium problems in chapter $14!$

$$
\begin{aligned}
& \frac{(x)(x)}{(0.100-x)}=4.5 \times 10^{-4} \\
& \frac{x^{2}}{0.100-x}=4.5 \times 10^{-4}
\end{aligned}
$$

This is a quadratic, We can solve it with the quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Ka is small. So, there will only be a small amount of acid that ionizes. That means ' x ', which represents the amount of acid that ionizes, is also small. If ' x ' is small relative to 0.100 , then ...

$$
\begin{aligned}
& 0.100-y \approx 0.100 \\
& \frac{x^{2}}{0.100}=4.5 \times 10^{-4} \\
& x^{2}=4,5 \times 10^{-5} \\
& y=0.0067082039=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \text {So, pH }=2.17 \\
& \text { When is it safe to assume ' } x \text { ' is small? } \\
& \text { Look at the difference between the } \\
& \text { initial concentration and the K. If they } \\
& \text { differ by a factor of } 1000 \text { or more, the } \\
& \text { assumption is safe. If not, just solve the } \\
& \text { quadratic! } \\
& \text { (Solving the quadratic give } \mathrm{pH}=2.19 \text {) }
\end{aligned}
$$

