$\mathrm{AgCl}: 107.9+35,45=143.3597 . \mathrm{mol}$
EXAMPLE: Calculate the grams per lifer of silver (i) chloride (AgCl) in a solution that is at equilibrium with solid AgCl .

$$
\mathrm{Ag}\left(1(s) \rightleftharpoons \mathrm{Ag}^{+}\left(\mathrm{an}_{4}\right)+\mathrm{Cl}^{-}\left(\mathrm{a}_{4}\right) ; \mathrm{K}_{c}=1.8 \times 10^{-10}\right. \text { We will deft }
$$

We will define ' x '
(2sict

$$
K_{c}=\left[A_{g}^{+}\right]\left[C^{-}\right]=1.8 \times 10^{-10}
$$ as the change in concentration of silver ion...

Species	[Initial $]$	$\Delta^{\sqrt{2}}$	[Equilibrium]
A_{g}^{+}	0	$+X$	X
$C 1^{-}$	0	$+X$	X

Each time we make a Ag+ ion, we also make a Clion (1:1 ratio in the equation)
Substitute into the equilibrium $(x)(x)=1,8 \times 10^{-10}$

$$
\begin{aligned}
& x=1.8 \times 10^{-10} \\
& x^{2}=1.8 \times 10^{-10}, \text { so } x=1.3 \times 10^{-5}=\left[A_{5}^{+}\right]=[\mathrm{Cl}]
\end{aligned}
$$

Since every silver ion comes from dissolving 1 formula unit of AgCl , the dissolved AgCl concentration equals the silver ion concentration ...

$$
\frac{1.3 \times 10^{-5} \mathrm{mu} \mid \mathrm{AgCl}}{L} \times \frac{143.3 \mathrm{~S}_{\mathrm{g} ~ \mathrm{~g} \mathrm{Cl}}}{\mathrm{~mol} \mathrm{Aghl}}=0.0019 \frac{\mathrm{~g} \mathrm{ggCl}}{\mathrm{~L}}
$$

$$
\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PC} \mathrm{I}_{5}(g) K_{C}=49
$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the concentration of each species in the equilibrium mixture?

$$
K_{c}=\frac{\left[\mathrm{PCl}_{S}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}=49
$$

Let x equal the decrease in concentration of phosphorous trichloride
Initial conditions

112 \qquad

$$
\frac{x}{(0.100-x)^{2}}=49
$$

$$
\begin{aligned}
x=49 & (0.100-x)^{2} \\
& \downarrow(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

$$
x=49\left(0.0100-0.200 x+x^{2}\right)
$$

$$
x=0.49-9.8 x+49 x^{2}
$$

$$
0=49 x^{2}-10.8 x+0.49
$$

$$
\begin{aligned}
& =49 x^{2}-10.8 \times 10.8 \quad c=0.49 \\
& a=49 \quad b=-10.4(49)(0.49)
\end{aligned}
$$

$$
x=\frac{+10.8 \pm \sqrt{(-10.8)^{2}-4(49)(0.49)}}{2(49)}=\frac{10.8 \pm \sqrt{20.6}}{98}
$$

$$
x=0.157 \text { or } 0.0639
$$

This value of 'x' gives us negative concentrations at equilibrium for both phosphorus trichloride and chlorine. That's physically impossible (you can't use more of a reactant than you supply), so the 0.0639 value must be the correct one!

Species	[Initial]	Δ	$[$ Equilibrium]
$P C l_{3}$	$\frac{0.400 \mathrm{~mol}}{4.00 \mathrm{~L}}=0.100$	$-x$	$0.100-x$
C_{2}	$\frac{0.406 \mathrm{mul})}{4.00 \mathrm{~L}}=0.100$	$-x$	$0.100-x$
$\left.P C\right\|_{5}$	0	$+x$	x
$x=0.0639$ Now, plug 'x 'back into the (Equilibrium) column ...			

$$
\begin{aligned}
& {\left[\mathrm{PCl}_{3}\right]=0.100-0.0639=0.036 \mathrm{MPCl}_{3}} \\
& {\left[\mathrm{Cl}_{2}\right]=0.100-0.0639=0.036 \mathrm{M} \mathrm{Cl}_{2}} \\
& {\left[P C l_{5}\right]=0.0639=0.064 \mathrm{mPCl}_{\mathrm{S}}}
\end{aligned}
$$

${ }^{114}$ An 8.00 L reaction vessel at 3900 C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

