van der Waals equation

- an attempt to modify PV = nRT to account for several facts.
 - gas molecules actually have SIZE (they take up space)
 - attractive and repulsive forces

$$PV = nRT$$
 Ideal gas equation
$$(P + \frac{n^2 a}{V^2}) (V - nb) = nRT$$
 van der Waals equation
$$(V - nb) = nRT$$
 attempts to account for molecular size attempts to account for attractive / repulsive forces

* "a" and "b" are experimentally determined parameters that are different for each gas. ρ 20%

CH3 CH20H:
$$\alpha = 12.56$$
 b= 0.08710 larger, and strong attractions between molecules

2500 L of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$H_2 + C|_2 \rightarrow 2 HC|$$

- 1 Convert 2500 L of chlorine gas to moles. Use IDEAL GAS EQUATION.
- 2 Convert moles chlorine gas to moles HCI Use CHEMICAL EQUATION.
- 3 Convert moles HCI to mass. Use FORMULA WEIGHT.

1)
$$PV = nRT$$
 $P = 1.00 \text{ atm}$ $V = 2500L$ $R = 0.08206 \frac{L-atm}{mol \cdot K}$ $N = \frac{PV}{RT}$ $T = 25.0°C = 298.2K$

$$N_{(12)} = \frac{(1.00 \text{ atm})(2500L)}{(0.08206 \frac{L-atm}{mol \cdot K})(298.2K)} = 102.1646983 \text{ mol}(l_2)$$
2) $mol Cl_2 = 2 \text{ mol}(HC)$ $MCC = H: 1 \times 1.006$

$$Cl: [x 35.45]$$
2) $mol Cl_2 = 2 \text{ mol}(HC)$ $MCC = H: 1 \times 1.006$

$$Cl: [x 35.45]$$
2) $MCC = MCC = MCC$

$$Mol Cl_2 = 2 \text{ mol}(HC)$$

If 48.90 mL of 0.250 M HCl solution reacts with sodium carbonate to produce 50.0 mL of carbon dioxide gas at 290.2 K, what is the pressure of the carbon dioxide gas?

- 1 Convert 48.90 mL of HCl solution to moles. Use MOLARITY.
- 2 Convert moles HCI to moles carbon dioxide gas. Use CHEMICAL EQUATION.
- 3 Convert moles carbon dioxide gas to PRESSURE. Use IDEAL GAS EQUATION.

150 ENERGY

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
 - energy is the ability to do "work"

motion of matter

Kinds of energy?

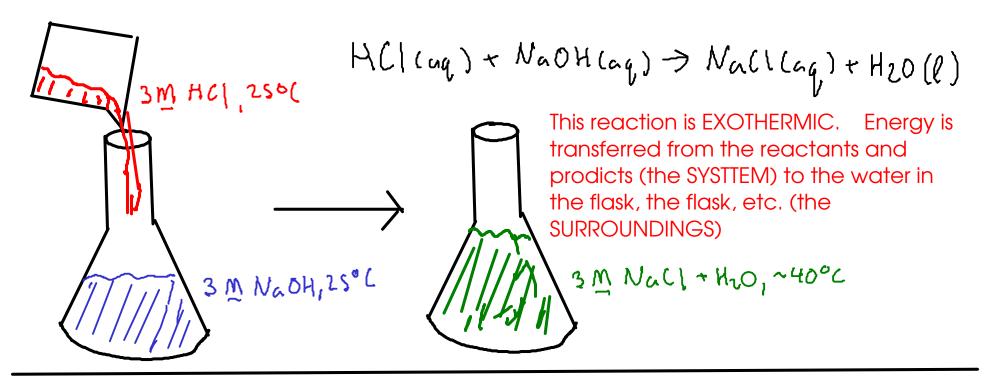
- Kinetic energy: energy of matter in motion $F_{K} = \frac{1}{2} \text{ m} \sqrt{2}$

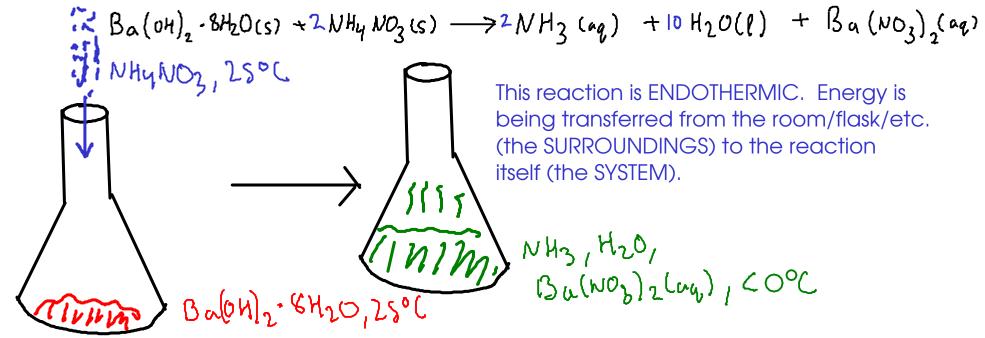
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
 - Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"

related to the kinetic and potential energy of atoms, molecules, and their component parts.


- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)


Q: heat

SYSTEM: the object or material under study

SURROUNDINGS: everything else

Type of process	Energy is	Sign of Q	Temp of SURROUNDINGS
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS		increases

