You can combine all three steps on one line if you like!
(1) $159.80 \mathrm{~g}_{2}=\mathrm{mol} \mathrm{Br}_{2}$
(2) 2 mol $A l=3$ mol $B r_{2}$
(3) $26,98 \mathrm{gAl}=\mathrm{mol} \mathrm{Al}$

$$
\begin{gathered}
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \\
(1)
\end{gathered}
$$

Things we can do:

If we have and we need ...	Use ...
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR
MOLES OF A		CONCETRATION (MOLARITY)

Example:
How many milliliters of 6.00 M hydrochloric acid ($\mathrm{FW}=36.46 \mathrm{~g} / \mathrm{mol}$) is needed to completely react with 25.0 g of sodium carbonate ($\mathrm{FW}=105.99 \mathrm{~g} / \mathrm{mol}$)?

$$
2 H \mathrm{Cl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaCl}(\mathrm{aq})\right.
$$

1 - Convert mass sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl . Use MOLARITY.
(1) 105.99 y $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{NN}_{2} \mathrm{CO}_{3}$

$$
25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{~N}_{\mathrm{a}_{2} \mathrm{CO}}^{3}
$$

(2) $2 \mathrm{mal}_{\mathrm{l}} \mathrm{HCl}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{mul} \mathrm{Na}_{a_{2} \mathrm{CO}}^{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

102 Example:
How many milliliters of 6.00 M hydrochloric acid (FW=36.46 g/mol) is needed to completely react with 25.0 g of sodium carbonate ($\mathrm{FW}=105.99 \mathrm{~g} / \mathrm{mol}$)?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NuCl}(\mathrm{aq})\right.
$$

1 - Convert mass sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl . Use MOLARITY.
(3) $6.00 \mathrm{mb} \mathrm{Hol}=i$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of } 6.00 \mathrm{~m} \mathrm{HCl}
$$

Problem specifies we need to report the volume in mL , not L :

$$
\begin{aligned}
& m L=10^{-3} \mathrm{~L} \\
& 0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL}+F 6.00 \mathrm{mHcI}
\end{aligned}
$$

103

$$
4 \underset{\substack{\text { propylene }}}{42.081 \mathrm{~g} \mid \mathrm{mol}} \underset{3}{\mathrm{H}_{6}}+6 \mathrm{NO} \longrightarrow 4{\underset{\substack{\text { acrylonitrile }}}{\mathrm{S} 3.064 \mathrm{~g} / \mathrm{mdl}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}}_{3}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert mass propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mul}_{3} \mathrm{H}_{6}$
(2) $4 \mathrm{~mol}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{Cl}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{equation*}
\text { GS) } \mathrm{g}_{3} \mathrm{H}_{3} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.08)_{\mathrm{g}} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{mul}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}=821 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \tag{2}
\end{equation*}
$$

104

$$
\begin{aligned}
\text { IS 1.90 g/ mol } \\
\begin{aligned}
10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
& +8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert mass iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume. Use MOLARITY.
(1) 151.70 g FeSt $=\operatorname{mal~FeSO} 4$
(2) $10 \mathrm{molFeSO}_{4}=2 \mathrm{~mol}_{\mathrm{MMnO}}^{4}$
(3) $0.250 \mathrm{malhranO}_{4}=L$

Do a quick unit conversion to get volume in mL ...

$$
0.0177 \mathrm{~L} \times \frac{m \mathrm{~L}}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{MKMnO}_{4}
$$

