- Experimentally, we can usually determine the reactants and products of a reaction
- We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING
- BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it.
- A properly balanced chemical equation has the smallest whole number ratio of reactants and products.
- There are several ways to do this, but we will use a modified trial-and-error procedure.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\underset{4}{5 \mathrm{O}_{2}} \rightarrow \underset{4}{3} \rightarrow \underset{4}{3 \mathrm{CO}_{2}}+\mathrm{H}_{2} \mathrm{O}
$$

(1) Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation.

Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE!
(3)

Repeat 1-2 until all elements are done.
Go back and quickly VERIFY that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMIMATOR of your fraction.

Use SMALLEST WHOLE NUMBER RATIOS!

$$
\begin{gathered}
3 \mathrm{MgCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \xrightarrow{\text { BALANCING }} \cdot \mathrm{M}_{\mathrm{g}_{3}}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl} \\
\mathrm{C}_{2} \mathrm{H}_{2}+2 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
45+5
\end{gathered}
$$

We used a coefficient of $21 / 2$ to fix the number of oxygen atoms, BUT we're supposed to be using WHOLE NUMBERS. To get a ratio of whole numbers, MULTIPLY ALL COEFFICIENTS by the denominator of the fraction (in this case, 2 ...)

$$
\begin{array}{r}
2 \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{SO}_{2} \longrightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

1 - Avoid H , balance S. (H appears in two compounds on the left side)
2 - Avoid O, balance Na. (O appears in ALL FOUR compounds!)
3 - Balance H (easier than O)
4 - Balance O (already done!)

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

Chemical equations are written and balanced in terms of ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

THE MOLE CONCEPT

- A "mole" of atoms is 6.022×10^{23} atums
- Why - in the metric dominated world of science - do we use such a strange number for quantity of atoms?

The mole is also defined as the number of carbon-12 atoms in exactly 12 g of carbon-12
carbon-12

THE MOLE CONCEPT

- Why define the mole based on an experimentally-measured number?
- The atomic weight of an element (if you put the number in front of the unit GRAMS) is equal to the mass of ONE MOLE of atoms of that element!

the mass of ONE MOLE of naturally-occurring carbon atoms

Magnesium (Mg): 24.31 g = the mass of ONE MOLE OF MAGNESIUM ATOMS

- So, using the MOLE, we can directly relate a mass and a certain number of atoms!

RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

Example: How many moles of atoms are there in $250 . \mathrm{g}$ of magnesium metal?

$$
\begin{aligned}
& m_{\mathrm{g}}: 24.31 \mathrm{~g} m_{\mathrm{g}}=\mathrm{mol}_{\mathrm{g}} \\
& 250 . \mathrm{g} m_{\mathrm{g}} \times \frac{\mathrm{mol}_{\mathrm{g}}}{24.31 \mathrm{gmg}}=10.3 \mathrm{~mol} m_{\mathrm{g}}
\end{aligned}
$$

${ }^{88}$
Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{aligned}
& \mathrm{Fe}: 55.85 \text { aramid weight } \\
& 55.85 \mathrm{gFe}=\mathrm{mol} \mathrm{Fe} \\
& 1.75 \text { mol fe } \times \frac{55.8 \mathrm{~g} \mathrm{ge}}{\text { mol fe }}=97.7 \mathrm{~g} \mathrm{Fe}
\end{aligned}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}: \quad H: 2 \times 1.008=2.016 \\
& 0: 1 \times 16.00=\frac{16.00}{18.0161} \\
& \text { FORMULA WEIGHT is the mass of one mole } \\
& 18.016 \mathrm{gH}_{2} \mathrm{O}=\mathrm{m}_{0} 1 \mathrm{H}_{2} \mathrm{O} \\
& \text { of either an element OR a compound. } \\
& 25.0 \mathrm{~g} 460 \times \frac{\mathrm{mul} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{gHzO}}=1.39 \mathrm{~mol} \mathrm{H} \mathrm{O}
\end{aligned}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

90 Example: How many grams of barium chloride do we need to weigh out to get 3.65 moles of barium chloride?

Find the FORMULA of barium chloride:

$$
\frac{\mathrm{Ba}^{2+} \mathrm{Cl}^{-}}{\mathrm{Cl}^{-}}
$$

Find the FORMULA WEIGHT
Ba: 1×137.3
$\mathrm{Cl}: \frac{2 \times 35.45}{208.2 \mathrm{~g} \mathrm{BaCl}}=\operatorname{mol} \mathrm{BaCl}_{2}$

Now find mass ...

$$
3.65 \mathrm{~mol} \mathrm{BaCl}_{2} \times \frac{208.2 \mathrm{~g} \mathrm{BaCl}_{2}}{\text { mol } \mathrm{ASCl}_{2}}=760 . \mathrm{BBaCl}_{2}
$$

