How do we actually USE a conversion factor?

Convert 15.75 m to ©m
$$Cm = 10^{-2} \text{ m}$$
 If $X = 2$, then $\frac{X}{2} = \frac{1}{2}$ If $X = 2$ if

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.01893 kg to g
$$K_{g} = 10_{g}^{3}$$

0.01893 Kg x
$$\frac{109}{\text{Kg}} = [18.93g]$$

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTTOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to kg
$$mg = 10\frac{3}{9}$$
 $kg = 10\frac{3}{9}$
14500 mg $x = \frac{10\frac{3}{9}}{mg} \times \frac{kg}{10\frac{3}{9}} = 0.0145 kg$

Convert 0.147 cm² to m²

Cm = 10 m Tip: Don't use bases with EXPONENTS when making a metric conversion factor. Like in this example, use plain "m" rather than

0. | L1)
$$c_{m} \times \frac{10m}{c_{m}} \times \frac{10m}{c_{m}} = \frac{1.47 \times 10^{-5} m^{2}}{(0.00001417 m^{2})}$$
 use pla m/2 ...

Note: When you're converting squared or cubed units, remember to use each factor two (for squared) or three (for cubed) times:

8.45 kg to mg
$$\frac{10^3}{5}$$
 $\frac{10^3}{5}$ $\frac{10^3}{5}$ $\frac{10^3}{5}$ $\frac{10^3}{5}$ $\frac{10^3}{5}$ $\frac{10^{-6}}{5}$ $\frac{10^{-6}}{5}$

88100 kHz to MHz
$$\times$$
 Hz = 10^3 Hz
$$M_{4z} = 10^6$$
 Hz
$$M_{4z} = 10^6$$
 Hz

Convert 38.47 in to m, assuming 2.54 cm = 1 in

Convert 12.48 km to in

2.54 cm = in
$$Cm = 10^{-2}m$$
 $Km = 10^{3}m$

Accuracy and Precision

- two related concepts that you must understand when working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements