How do we actually USE a conversion factor?

*
Similar to...
If $X=2$, then

$$
\frac{x}{2}=1
$$

1S.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.01893 kg to $\mathrm{g} \quad \mathrm{Kg}=10^{3}$

$$
0,01893 \mathrm{kgg} \times \frac{10 \mathrm{~g}}{\mathrm{~g} \mathrm{~g}}=18.93 \mathrm{~g}
$$

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTtOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to $\mathrm{kg} \quad \mathrm{mg}=10^{-3} \mathrm{~g} \quad \mathrm{~kg}=10^{3} \mathrm{~g}$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{~kg}
$$

Convert $0.147 \mathrm{~cm}^{2}$ to $\mathrm{m}^{2} \quad \mathrm{~cm}=10^{-2} \mathrm{~m} \quad \begin{gathered}\text { Tip: Don't use bases with } \\ \text { EXPONENTS when making }\end{gathered}$ EXPONENTS when making a metric conversion factor. Like in this example,

$$
0.14) \operatorname{csn}^{2 x} \times \frac{10^{-2} \mathrm{~m}}{6 \mathrm{~m}} \times \frac{10^{-2} \mathrm{~m}}{c m}=\frac{1.47 \times 10^{-5} \mathrm{~m}^{2}}{\left(0.0000147 \mathrm{~m}^{2}\right)} \begin{aligned}
& \text { use pair } \\
& \mathrm{m}^{\wedge 2} \ldots
\end{aligned}
$$

Note: When you're converting squared or cubed units, remember to use each factor two (for squared) or three (for cubed) times:

$$
C m^{2}=C m \times C m \quad c m^{3}=c m \times c m \times c m
$$

8.45 kg to $\mathrm{mg} \quad k g=10^{3} \mathrm{~g} \quad \mu_{g}=10^{-6}$

$$
8.45 \mathrm{~h} / \mathrm{g} \times \frac{10^{3} \frac{g}{k / g}}{k g} \frac{\mu g}{10^{-6} g}=\frac{8450000000 \mathrm{mg}}{\left(8.45 \times 10^{9} \mathrm{wg}\right)}
$$

$$
\begin{gathered}
88100 \mathrm{kHz} \text { to } \mathrm{MHz} \mathrm{KHz}=10^{3} \mathrm{~Hz} \quad \mathrm{~Hz}=\mathrm{S}^{-1} \text { (Frequency) } \\
M \mathrm{~Hz}=10^{6} \mathrm{~Hz} \\
88100 \mathrm{~W} / \mathrm{Hz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{~K}_{4} \mathrm{~Hz}} \times \frac{\mathrm{MHz}^{6} \mathrm{~Hz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
\end{gathered}
$$

17
Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1 \mathrm{in}$

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=1 \mathrm{~m} \quad c m=10^{-2} \mathrm{~m} \\
& 38.47 \mathrm{~m} \times \frac{2.54 \mathrm{~cm}}{\mathrm{in}} \times \frac{10^{-2} \mathrm{~m}}{c / m}=0.9771 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Convert } 12.48 \mathrm{~km} \text { to in } \\
& 2.54 \mathrm{~cm}=\text { in } \quad \mathrm{cm}=10^{-2} \mathrm{~m} \quad \mathrm{~km}=10^{3} \mathrm{~m} \\
& 12.48 \mathrm{k} / \mathrm{m} \times \frac{10^{3} \mathrm{~m}}{1<\mathrm{m}} \times \frac{\mathrm{cm}}{10^{-2} \mathrm{~m}} \times \frac{\text { in }}{2.54 \mathrm{~cm}}=491300 \mathrm{in}
\end{aligned}
$$

Accuracy and Precision

- two related concepts that you must understand when working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

