- To describe the electrons, we use WAVEFUNCTIONs - which are mathematical descriptions of the behavior or electrons.
- The wavefunction describes the probability of finding an electron in a given space
- For larger objects, the wave behavior isn't very important and quantum mechanics becomes traditional Newtonian physics.

When we talk about describing electrons ... we will talk about the PARAMETERS that go into this WAVEFUNCTION ... without doing the actual math.

- There are FOUR of these parameters. (the Bohr model had only one!)
- The parameters are called "quantum numbers"
(1) Principal quantum number
(2) Angular momentum quantum number
(3) Magnetic quantum number

4) Spin quantum number

- Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS.

PRINCIPAL QUANTUM NUMBER (n):

- "energy level", "shell"
- Represents two things:
* The distance of the electron from the nucleus.
* Energy. " n " is one factor that contributes to the energy of the electron.
$n=1,2,3,4, \ldots$ (integers)
(2) ANGULAR MOMENTUM QUANTUM NUMBER: ℓ
- "subshell"
- Represents the SHAPE of the region of space where the electron is found.
- (Bohr assumed CIRCULAR orbits for electrons ... but there are more possibilities.)
-"I" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.
$l=0$ to $n-1$, integers

$$
n=2 ; \quad l=0,1
$$

"|" $=1$; dumbbell shaped Also called a "p" subshell

$$
n=3, \quad l=0,1,2
$$

Higher values for "I" translate to higher energies for the electron!

"I"=2; flower-shaped
Also called a "d" subshell (p285,3-0 pictures
of subshells) For convenience, and partially for historical reasons, we use letters to (299010 mm ed) designate the different subshells.

$$
\begin{array}{lll}
l=0 & \text { "s" } & l=2 \text { "d" } \\
l=1 \text { "p" } & l=3 \text { "f" } & \downarrow \text { " } \\
\text { The rest follow the } \\
\text { alphabet }
\end{array}
$$

(3) MAGNETIC QUANTUM NUMBER m_{l}

- Represents the ORIENTATION of a subshell in 3D space.

... all the arrangements of a single subshell have the same energy. The magnetic quantum number DOESN'T contribute to the energy of an electron.
(4) (MAGNETIC) SPIN QUANTUM NUMBER: m_{S}

$$
m_{S}=-1 / 2 \quad O R^{+1} / 2 \quad \text { "spin down" or "spin up" }
$$

- An ORBITAL (region with fixed " n ", "l" and "ml" values) can hold TWO electrons.

ORBITAL DIAGRAM

- A graphical representation of the quantum number "map" of electrons around an atom.

A note on chemical bonding and electron arrangement:

- Filled and half-filled subshells seem to be preferred by atoms.

Hund's Rule

- When you have two or more orbitals with equivalent energy, electrons will go into each equivalent orbital BEFORE pairing. Pairing costs a bit of energy - less than going to a higher-energy orbital, but more than going to another equivalent orbital.

p2

Electron configurations with filled subshells OR HALF-FILLED SUBSHELLS are more stable than other configurations. (can explain some transition metal chemistry)

1L 1 Electrons begin to pair only AFTER all equivalent p4 "p" orbitals are full.

Experimental evidence for Hund's rule:
"Paramagnetism" - attraction of an atom to a magnetic field

* Spinning electrons are magnetic, but OPPOSITE spins cancel each other out.
* Atoms with unpaired electrons are paramagnetic, while atoms containing only paired electrons are not.

A little bit about transition metals...

- Most transition metals have TWO valence electrons (in an "s" subshell), and the other ions they form come from electron loss in "d" subshells.

ELECTRON CONFIGURATION (SHORT FORM)

- We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

$$
T_{i}: \frac{1}{T} s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{6} 3 d^{2} 4 \frac{4 s^{2}}{L_{\text {valence electrons }}} \begin{aligned}
& \text { valence electrons have the } \\
& \text { largest value for " } n \text { "! }
\end{aligned}
$$

$$
T_{i}: \frac{[A r]}{} 3 d^{2} \frac{4 s^{2}}{L} \text { valence electrons }
$$

"noble gas core". We're saying that titanium has the same electron configuration as argon does, with the addition of the electrons that follow. This is a useful shorthand, since the "core" electrons generally don't get involved in bonding.

ELECTRON CONFIGURATION AND THE PERIODIC TABLE

									IIIA IVA VA VIA VIIA					$\frac{\text { VUAA }}{2 b r e}$
$\mathrm{Li} \mathrm{Be}$									B	c	N N	O	/ ${ }^{\text {F }}$	Ne
$\mathrm{Na} \mathrm{Kg}$	\|IIB IVB/	B ,	VIB				$\square 18$		Al	Si	P	s	Cl	Ar
K ca	Sc ${ }^{\text {Ti }}$	\checkmark	Cr	Mn	Fe	Co	Ni C	Zn	Go	Ge	As	Se	Br	Kr
$\mathrm{Rb} / \mathrm{Sr}$	Y Zr	Nb M	Mo	Tc	Ru	Rh	Pa A		In	sh	Sb	Je	-	xe
$\text { Cs } 8 \text { Ba }$	$\begin{array}{\|c\|c\|} \hline y^{*} & \mathrm{Hf} \\ \hline \end{array}$	Ta	W	Re	Os	ir	Pt		TI	Pb	$B i$	Po	, At	Rn
Ef Ra	$\mathrm{Ac\mid Rf}$	Db S	Sg	Bh	Hs	M \dagger	$x / i n n$	fra		on m	meto	go	o hert	

"s" block: last electron in these atoms is in an "s" orbital!
"p" block: last electron in these atoms is in a "p" orbital!
"d" block: last electron in these atoms is in a "d" orbital

- To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

Example: Phosphorus (P): $2 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
Noble gas core notation for P: [Ne] $3 s^{2} 3 p^{3}$

Remember - valence electrons are ALL of the
$F \quad 1 s^{2} \frac{2 s^{2} 2 p^{s}}{1}$ electrons in the outermost SHELL (n)! More that one subshell (I) may be included in the valence electrons
$s 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
TITANIUM is a transition metal that commonly forms either +2 or +4 cations. The 4 s electrons are lost when the +2 ion forms, while the As AND 3d electrons are lost to form the +4 !
$\mathrm{Cl} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
[Ne$] 3 s^{2} 3 p^{5}$
You can order the subshells in numeric order OR
$\mathrm{Ti} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$
or $[A r] 3 d^{2} 4 s^{2}$ or $[A s] 4 s^{2} 3 d^{2}$
Se $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4}$
or $[A r] 3 d^{10} 4 s^{2} 4 p^{4}$ Noble gas core notation. Use the previous noble gas on the table, then add the electrons that it doesn't have to the end.
$\operatorname{Kr}[A r] 3 d^{104 \delta^{2} 4 p^{6}}$
Sample f-block element
[or]

$$
c_{e}:\left[x_{e}\right] G s^{2} S d^{\prime} 4 f^{\prime}
$$

