PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\mathrm{NH}_{4}{ }^{+} \quad \mathrm{NO}_{3}-
$$

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{NO}_{3}: & \mathrm{N}: 2 \times 14.01=28.02 \\
& H: 4 \times 1.008=4.032 \\
& 0: 3 \times 16.00=\frac{48.00}{80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=\mathrm{mol} \mathrm{NH}} 44 \mathrm{NO}_{3}
\end{aligned}
$$

should sum to
100%... within
roundoff error.
\longleftarrow Use FORMULA WEIGHT when relating mass and moles \downarrow
You have a 250.g bottle of silver (I) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& A_{g} C l l_{1:} A_{g}: 1 \times 107.4 \\
& 61: \frac{1 \times 35.45}{143.35 g \mathrm{AgCl}}=\operatorname{mol} \mathrm{AgCl}
\end{aligned}
$$

How many grams of NaOH are present in a 1.50 mole sample of NaOH ?

$$
\begin{aligned}
& \text { NaOs NG: } 1 \times 22,99 \\
& 0 \div 1 \times 16.00 \\
& H: \frac{1 x 1,008}{39.998 g \mathrm{NaOH}=\operatorname{mol} \mathrm{NaOH}} \\
& 1.50 \mathrm{~mm} \mathrm{NmOH} \times \frac{39.998 \mathrm{~g} \mathrm{NaH}}{\mathrm{~mol} \mathrm{NaH}}=60.0 \mathrm{~g} \mathrm{NaH}
\end{aligned}
$$

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A 1=3 \text { molecules } B r_{2}=2 \text { formula units } A \mid B_{r_{3}}}{2 \text { mol } A 1=3 \text { mol } B r_{2}=2 \text { mol } A \mid B r_{3} *}
$$

- To do chemical calculations, we need to:
(1) - Relate the amount of substance we know (mass or volume) to a number of moles
(2) - Relate the moles of one substance to the moles of another using the equation
(3) - Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert the 25.0 g of bromine to moles. Use formula weight. $B r_{2}: \frac{2 \times 79.90}{159.8}$
$159.8 \mathrm{~g} \mathrm{Br}_{2}=$ mol Br 2

$$
25.0 \mathrm{~g} B r_{2} \times \frac{\mathrm{mol} B r_{2}}{159.8 \mathrm{~g} B r_{2}}=0.1564455569 \mathrm{~mol} B r_{2}
$$

(2) Convert the moles bromine to moles aluminum. Use chemical equation.

$$
2 \mathrm{molAl}=3 \mathrm{~mol} \mathrm{~B}_{2}
$$

$$
0.1564455569 \mathrm{~mol} \mathrm{Br}_{2} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} r_{2}}=0.104297038 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert the moles aluminum to mass. Use formula weight. AI :26.98

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=\operatorname{mul~Al} \\
& 0.104297038 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{mul} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!
1 - Convert the 25.0 g of bromine to moles. Use formula weight.
2 - Convert the moles bromine to moles aluminum. Use chemical equation.
3 - Convert the moles aluminum to mass. Use formula weight.
(1) 159,8 y $B r_{2}=\mathrm{mol} B r_{2}$
(2) $2 \mathrm{~mol} A \mid=3 \mathrm{~mol} B r_{2}$
(3) $26.98 \mathrm{~g} \mathrm{Al}=\mathrm{mul} \mathrm{Al}$

$$
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{\mathrm{mol} B r_{2}}{159.8 \mathrm{~g} B_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{~m}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{mul} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
$$

${ }^{150}$ Example:
How many grams of sodium carbonate is needed to make 15.5 grams of sodium chloride, assuming there is sufficient hydrochloric acid for the reaction

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 15.5 g NaCl to moles. Use FORMULA WEIGHT.
2 - Convert moles NaCl to moles sodium carbonate. Use CHEMICAL EQUATION
3 - Convert moles sodium carbonate to grams. Use FORMULA WEIGHT

$$
\begin{aligned}
\mathrm{NaCl}: & 1 \times 22.99 \\
& \frac{1 \times 35.45}{58.44 \mathrm{gaCl}}=\mathrm{mol} \mathrm{NaCl}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \text { IS.S g NaCa } \times \frac{\text { mol } \mathrm{NaCl}_{\mathrm{al}}}{58.44 \mathrm{~g} \mathrm{Nall}}=0.265229295 \mathrm{~mol} \mathrm{NaCl} \\
& \operatorname{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}=2 \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

(2) $0.265229295 \mathrm{~mol} \mathrm{NaCl}_{\mathrm{ac}} \frac{\mathrm{mol} \mathrm{Nanco}_{3}}{2 \mathrm{~mol} \mathrm{Nacl}}=0.132614647 \mathrm{Smol}_{\mathrm{ma}} \mathrm{Co}_{3}$

Example:
How many grams of sodium carbonate is needed to make 15.5 grams of sodium chloride, assuming there is sufficient hydrochloric acid for the reaction

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})\right.
$$

1 - Convert 15.5 g NaCl to moles. Use FORMULA WEIGHT.
2 - Convert moles NaCl to moles sodium carbonate. Use CHEMICAL EQUATION
3 - Convert moles sodium carbonate to grams. Use FORMULA WEIGHT

$$
\begin{aligned}
\hline \mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{Na}_{4}: & 2 \times 22.99 \\
C & : 1 \times 12.01 \\
0 & : \frac{3 \times 16.00}{105.99 \mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(3)

$$
0.132614647 \mathrm{Smal}_{\mathrm{ma}} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{\mathrm{mul} \mathrm{Na}_{2} \mathrm{CO}_{3}}=14.1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

EXAMPLE PROBLEM:

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

1 - Convert 2545 g chlorine gas to moles. Use FORMULA WEIGHT.
2 - Convert moles chlorine gas to moles sodium metal. Use CHEMICAL EQUATION
3 - Convert moles sodium metal to grams. Use FORMULA WEIGHT.
(1) $\mathrm{Cl}_{2}: \frac{2 \times 35.45}{70.90 \mathrm{~g} \mathrm{Cl}}=\mathrm{mol} \mathrm{Cl} 2$
(2) $\mathrm{molCl} l_{2}=2 \mathrm{~mol} \mathrm{Na}$
(3) $\mathrm{Na}=22.99 \mathrm{~g} \mathrm{Na}=\mathrm{mal}_{\mathrm{a}} \mathrm{Na}$

$$
254 \mathrm{~s}_{\mathrm{g}} \mathrm{Cl}_{2} \times \frac{\mathrm{mol} \mathrm{Cl}}{20.90_{\mathrm{g}} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Na}_{\mathrm{a}}}{\mathrm{mulCl}} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{\mathrm{~mol} \mathrm{Na}_{2}}=1650 . \mathrm{g} \mathrm{Na}
$$

