Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \frac{\text { constant }}{P}, \frac{V_{2}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{aligned}
V_{1} & =3.5 \mathrm{~L} \quad V_{2} \\
T_{1} & =27.0^{\circ} \mathrm{C} \quad \begin{array}{l}
T_{2} \\
\\
\\
\end{array}=-500.2 \mathrm{~K} \quad \\
& =268.2 \mathrm{~K}
\end{aligned} \\
& \begin{array}{l}
\frac{3.5 \mathrm{~L}}{300.2 \mathrm{~K}}
\end{array}=\frac{V_{2}}{268.2 \mathrm{~W}} \\
& 3.1 \mathrm{~L}=V_{2}
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to
31.0 C , what is the pressure of the gas in the piston? $P_{1}=1.00 \mathrm{~atm}$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
V_{1}=2.25 \mathrm{~L}
$$

$$
T_{1}=25.0^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
P_{2} & =? \\
V_{2} & =1.00 \mathrm{C} \\
T_{2} & =31.00 \mathrm{c} \\
& =304.2 \mathrm{k}
\end{aligned}
$$

$$
\frac{(1.00 \mathrm{aim})(2.25 \mathrm{~L})}{(298.2 \mathrm{~L})}=\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{~K})}
$$

$$
=298.2 \mathrm{k}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\begin{aligned}
& \frac{\mathrm{Q} \mathrm{O}_{2}}{\mathrm{O}_{2}: 32.00 \mathrm{gO}_{2}=\mathrm{md} \mathrm{O}} 22
\end{aligned} \quad \begin{aligned}
& * \text { Volume of a 10'x10'x8' } \\
& \text { room }
\end{aligned}
$$

1 - Calculate the moles of gas in the room using IDEAL GAS EQUATION.
2 - Convert moles gas (assuming it's all oxygen) to mass using FORMULA WEIGHT.
$P V=n R T \quad$ Find the moles of gas by solving for ' n ' ...

$$
\frac{P V}{R T}=n \left\lvert\, \begin{array}{ll}
P=1.18 \mathrm{arm} & R=0.08206 \frac{\mathrm{Larm}}{\mathrm{moloh}} \\
V=22650 \mathrm{~L} & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}\right.
$$

(1) $n_{D_{2}}=\frac{(1.18 \mathrm{arm})(22680 \mathrm{C})}{\left(0.08206 \frac{\mathrm{Lodtm}}{\mathrm{mol} \cdot \mathrm{h}}\right)(298.2 \mathrm{rr})}=1092.222357 \mathrm{mal} \mathrm{O}_{2}$
(2)

$$
\begin{aligned}
& 32.00 \mathrm{gO}_{2}=\mathrm{mol} \mathrm{O}_{2} \\
& 1092.222 .357 \mathrm{mul} \mathrm{O}_{2} \times \frac{32.00 \mathrm{gO}}{\mathrm{moloz}}=35000 \mathrm{~g} \mathrm{O}_{2} \sim 77 \mathrm{~Kb}
\end{aligned}
$$

CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.9 sodium bicarbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium bicarbonate to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to volume. Use IDEAL GAS EQUATION.
(1) $84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHCO}_{3}$ (2) $2 \mathrm{~mol}_{\mathrm{NaHCO}}^{3}=2 \mathrm{~mol} \mathrm{Co} 2$

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{NaHCO}_{3} \times \frac{\mathrm{mul} \mathrm{NaHCO}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{mul} \mathrm{CO}_{2}}{2 \mathrm{mul} \mathrm{NaHCO}}=0.2975942481 \mathrm{~mol} \mathrm{Co}_{2} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{l|ll}
P V=n R T & n=0.2975942481 \mathrm{~mol} \mathrm{CO} & T=25.0 \circ \mathrm{C}=298.2 \mathrm{~K} \\
V=\frac{n R T}{P} & R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{arm}}{\mathrm{~mol}} \mathrm{~K} & P=0.950 \mathrm{~atm} \\
&
\end{array} \\
& V=\frac{\left(0 . 2 9 7 5 9 4 2 4 8 1 \mathrm { mol } (\mathrm { O } _ { 2 }) \left(0.0820\left(\frac{\mathrm{~L} \cdot \mathrm{ah} \mathrm{hm}_{\mathrm{m}}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{k})\right.\right.}{(0.950 \mathrm{arm})}=\begin{array}{l}
7.67 \mathrm{~L} \mathrm{CO}_{2} \\
\mathrm{at} 25.0^{\circ} \mathrm{C}, \\
0.950 \mathrm{~atm}
\end{array}
\end{aligned}
$$

What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)
Let's use the combined gas law to get the volume at STP:

$$
\begin{array}{lll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} & P_{1}=0.950 \mathrm{~atm} & P_{2}=1.00 \mathrm{ahm} \\
& V_{1}=7.62 \mathrm{~L} & V_{2}=? \\
& T_{1}=298.2 \mathrm{~b} & T_{2}=273.2 \mathrm{~h}
\end{array}
$$

$$
\frac{(0.950 \text { atm })(7.676)}{(298.2 \mathrm{~W})}=\frac{(1.00 \mathrm{abm}) \mathrm{V}_{2}}{(273.2 \mathrm{k})}
$$

Note: STP is a *defined* condition ... so the 1 atm and 0 C temperatures are EXACT.

$$
\begin{aligned}
& 6.67 \mathrm{~L}=V_{2} \\
& 6.67 \mathrm{LCO} \text { at STP }
\end{aligned}
$$

Alternate solution: Use PV=nRT a second time with STP as the temperature and pressure (since we already calculated moles in the previous problem.)

