$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{gathered}
159.80 \mathrm{~g} \mathrm{Br} \\
25.0 \mathrm{~mol} \mathrm{Br}_{2} \\
2 \mathrm{Br}_{2} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{gr}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
\end{gathered}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.1564 \mathrm{smol} B r_{2} & \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}
\end{aligned}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{gAl}=\operatorname{mol} A 1 \\
& 0.10430 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} A 1}{\operatorname{mol} A 1}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!
(1) $159.80 \mathrm{~g}_{2}=\mathrm{mol} \mathrm{Br}_{2}$
(2) 2 mol $A l=3$ mol $B r_{2}$
(3) $26,98 \mathrm{gAl}=\mathrm{mol} \mathrm{Al}$

$$
\begin{gathered}
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \\
(1)
\end{gathered}
$$

Things we can do:

If we have and we need ...	Use ...
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR
MOLES OF A		CONCETRATION (MOLARITY)

101 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 H C l(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NuCl}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume. Use MOLARITY. (6.00M)
(I)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}_{\mathrm{a}}: 2 \times 22.94 \\
& C!1 \times 12.01 \\
& 0: \frac{3 \times 16,00}{105.99 \mathrm{~g} \mathrm{a}_{2} \mathrm{KO}_{3}}=\operatorname{mol~\mathrm {Na}_{2}\mathrm {CO}_{3}} \\
& 2 \mathrm{S.O} \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{an}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(2) $2 \operatorname{mol} \mathrm{HCl}=\operatorname{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{Co}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{molNa}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

${ }^{102}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}_{4}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles MCI to volume. Use MOLARITY. (6.00M)
(3) $6.00 \mathrm{molHCl}=\mathrm{L}$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{L}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of } 6,00 \mathrm{mHCl}
$$

We have an answer in L , but we're asked for mL . Do a quick unit conversion.

$$
\begin{gathered}
m L=10^{-3} \mathrm{~L} \\
0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \mathrm{of} 6,00 \mathrm{M} \mathrm{HCl}
\end{gathered}
$$

103

$$
\begin{aligned}
& 42.081 \mathrm{~g} / \mathrm{mul} \\
& \text { S3,064 } 91 \mathrm{mul} \\
& 4 \mathrm{C}_{3} \mathrm{H}_{6}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { propylene } \\
& \text { acrylonitrile }
\end{aligned}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert 651 g propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION
3 - Convert moles acrylonitrile to grams acrylonitrile. Use FORMULA WEIGHT.
(1) $42.083 \mathrm{~g} \mathrm{C} \mathrm{C}_{6}=\mathrm{mul}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{gathered}
6 \mathrm{Slg} C_{3} H_{6} \times \frac{\mathrm{mul}_{3} \mathrm{H}_{6}}{42.081 \mathrm{gC}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}= \\
=82 \lg _{3} \mathrm{H}_{3} \mathrm{~N}
\end{gathered}
$$

104

$$
\begin{aligned}
& \text { IS1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT,
2 - Convert moles iron(II) sulfate to moles potassium permanganate. Use CHEMICAL EQUATION
3 - Convert moles potassium permangenate to volume. Use MOLARITY (0.250M)
(1) $151.90 \mathrm{~g} \mathrm{FeSO}=\mathrm{malFeSO}_{4}$
(2) $10 \mathrm{~mol}_{\mathrm{FeSO}_{4}}=2 \mathrm{mal} \mathrm{KMnO}_{y}$
(3) $0.250 \mathrm{~mol} \mathrm{NMMO} \mathrm{M}_{4}=\mathrm{L}$

$$
\begin{align*}
&=0.0177 \mathrm{~L} \text { convert to } \mathrm{mL} \tag{1}\\
& \mathrm{~mL}=10^{-3} \mathrm{C} \\
& 0.0177 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{C}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{M} \mathrm{KMnO}_{4}
\end{align*}
$$

