DOUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions
- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

- Form: \[AB + CD \rightarrow AD + CB \]

 "A" and "C" are CATIONS
 "B" and "D" are ANIONS

- Can be predicted based on the characteristics of the potential products (More on that later!)
- Occur in AQUEOUS SOLUTION
- Do not involve electron transfer.

Examples:

\[3MgCl_2(aq) + 2Na_3PO_4(aq) \rightarrow Mg_3(PO_4)_2(s) + 6NaCl(aq) \]

\[AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaN_3(aq) \]
DOUBLE REPLACEMENT (EXCHANGE) REACTIONS

\[\text{AB} \leftrightarrow \text{CD} \rightarrow \text{AD} \leftrightarrow \text{CB} \]

In exchange reactions, ions switch partners to make new compounds!

... but HOW do they switch partners?

1. Exchange reactions almost always take place in AQUEOUS SOLUTION

2. In aqueous solution, IONIC THEORY applies!
Briefly, ionic theory states that certain substances (like soluble ionic compounds) break apart into their component ions when dissolved in water!

\[\text{NaCl(s)} + \text{H}_2\text{O} \rightarrow \text{Na}^+ (aq) + \text{Cl}^- (aq) \]

Once you have "ion soup", what happens next?

\[\text{Na}^+ \text{Ag}^+ \]
\[\text{NO}_3^- \text{Cl}^- \]
When silver and chloride ions meet, they form an INSOLUBLE compound, silver(I) chloride. This falls out of the solution

$$Na^+ Cl^- + Ag^+ NO_3^- \rightarrow Na^+ Ag^+ NO_3^- Cl^-$$

"ion soup"

$$\downarrow$$

$$Na^+ NO_3^-$$

"precipitate"

$$AgCl$$

Formation of AgCl drives this reaction!
For an exchange reaction to proceed, there must be something (a new product) **DRIVING** the reaction.

3 kinds of exchange chemistry:

1. **Reactions that form PRECIPITATES** (insoluble ionic compounds)
2. **Reaction that form STABLE MOLECULES** like water
 - if water forms, reaction is called "neutralization"
3. **Reactions that form UNSTABLE MOLECULES** that break down into other small molecules, often gases.

If any of these three possibilities form from the "ion soup", a reaction will occur.

If not, NO reaction occurs.
- Form an insoluble ionic compound

\[\text{Mg}^{2+}(aq) + \text{Na}_3\text{PO}_4(aq) \rightarrow \text{???)} \]

Ions:

\[\begin{align*}
\text{Mg}^{2+} & \quad \text{Cl}^- \\
\text{Na}^+ & \quad \text{PO}_4^{3-}
\end{align*} \]

Possible Products:

\[\begin{align*}
\text{NaCl} \\
\text{Mg}_3(\text{PO}_4)_2
\end{align*} \]

Remember, IONS exchange partners. That means that you need to write out the IONS, including their charges, and pair them up. The formulas of the products are controlled by the CHARGES of the IONS in the new compounds!

\[3\text{MgCl}_2(aq) + 2\text{Na}_3\text{PO}_4(aq) \rightarrow 6\text{NaCl}(aq) + \text{Mg}_3(\text{PO}_4)_2(s) \]

- Does a solid (insoluble) ionic compound form? Check DATA (p 127 in book)

* When writing exchange reactions, figure out the formulas of the products FIRST, and THEN balance the equation.
FORMATION OF STABLE MOLECULES

- There are several stable molecules that may be formed in double replacement reactions, but the most common is WATER!

- Double replacement reactions that form water are also called "neutralizations"

\[\text{HA} + \text{BOH} \rightarrow \text{H}_2\text{O} + \text{BA} \]

\[\text{H}^+ \text{A}^- + \text{B}^+ \text{OH}^- \rightarrow \text{H}_2\text{O} \]

* To make water (\(\text{H}_2\text{O} \)), you need a source of hydrogen ion (\(\text{H}^+ \)) and hydroxide ion (\(\text{OH}^- \))

Chemically speaking, a SALT is an ionic compound that can be formed by the reaction of an acid and a base.

Practically speaking, all ionic compounds except hydroxides and oxides can be considered salts.
ACIDS

- compounds that release hydrogen ion (H\(^+\)), when dissolved in water.

Properties of acids:
- Corrosive: React with most metals to give off hydrogen gas
- Cause chemical burns on contact
- Taste sour (like citrus - citric acid!)
- Changes litmus indicator to RED
BASES

- Substances that release hydroxide ion (OH⁻) when dissolved in water

Properties of bases:
- Caustic: Attack and dissolve organic matter (think lye, which is NaOH)
- Cause skin/eye damage on contact
- Taste bitter
- Changes litmus indicator to BLUE

Due to the dissolving action of base on your skin, bases will feel "slippery". The base ITSELF is not particularly slippery, but what's left of your skin IS!
Examples of acid-base chemistry:

When a neutralization reaction occurs, energy is released. There will be a temperature increase!

\[
\text{H}_2\text{SO}_4 (aq) + 2\text{NaOH (aq)} \rightarrow 2\text{H}_2\text{O(l)} + \text{Na}_2\text{SO}_4 (aq)
\]

Ions: \(\text{H}^+ \quad \text{SO}_4^{2-} \quad \text{Na}^+ \quad \text{OH}^- \)

We can detect this reaction by \text{RELEASE OF HEAT!}

Why "neutralization"?

*The products of the reaction (water and a "salt") do not have any of the characteristic properties of acids and bases. These properties can be said to be "neutralized".

\[
\text{HCl (aq)} + \text{NH}_4\text{OH (aq)} \rightarrow \text{H}_2\text{O (l)} + \text{NH}_4\text{Cl (aq)}
\]

Ions: \(\text{H}^+ \quad \text{Cl}^- \quad \text{NH}_4^+ \quad \text{OH}^- \)

See solubility chart on p127 for information on phase labels.