MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

\widehat{I} BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

2 ACIDS

- molecular compounds that dissolve in water to release H^{T} ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

BINARY ACIDS

usually Group VIIA

- contain <u>hydrog</u>en and one other element

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT

- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

こ SECOND ELEMENT

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-<u>ide</u>" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES!

BINARY MOLECULAR COMPOUNDS

Examples: BF3	$(1_2 0_7)$	CD	CO_{2}
boron trifluoride	dichlorine heptoxide	carbon monoxide	carbon dioxide
H_2O	•		
dihydrogen monoxide (water)			
carbon tetrachloride	iodine trichloride	dinitroç	gen tetrafluoride
CCI_{4}	ICI3	\mathcal{N}_2	-Fy
MgCl2 Magnesium chloride, not magnesium dichloride. Why not? This one is ionic and is named using the system for ionic compounds we discussed earlier.			
(Ren	nember - compounds that be	gin with a metal dre ge	enerally IONIC)

D BINARY ACIDS

- named after the element (other than hydrogen) they contain

ACIDS

- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

```
Four

common

binary

acids

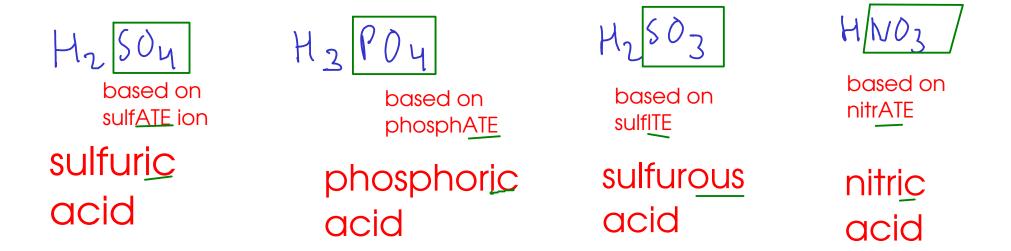
HCI: hydrochloric acid *most common binary acid!

HBC: hydrobromic acid

HI: hydroiodic acid
```

ACIDS

107


- Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS

- These acids are not true ionic compounds, but they interact with water to PRODUCE ions!

- named based on the polyatomic ion they contain, with an ending change:

I) - ions ending in -ATE form acids ending in -IC

し- ions ending in -ITE form acids ending in -OUS

OXYACID EXAMPLES

acetic acid based on ACETATE ion $H^+ C_2 H_3 O_2^-$

 $HC_2H_3O_7$

nitrous acid HE NO, -

HNOZ

carbonic acid $H + CO_3^2 - H^+$

H2(03

* The number of hydrogen ions to add to the polyatomic to make the acid equals the charge of the polyatomic. - You need to be able to tell, by looking at a name OR a formula, what kind of compound you are working with!

DON'T GET THE NAMING SYSTEMS MIXED UP! EACH KIND OF COMPOUND IS NAMED WITH ITS OWN SYSTEM!

FROM A CHEMICAL NAME

- If the name has a Roman numeral, the name of a metal, or "ammonium", the compound is likely IONIC

- If the name has a Greek prefix, the compound is **BINARY MOLECULAR**
- If the name contains the word "acid":

... and starts with "hydro-", then the compound is a BINARY ACID

... and does not start with "hydro-", the compound is an OXYACID

"FROM A CHEMICAL FORMULA

- if the formula contains a metal or the $\mathcal{NH}_{4}^{\dagger}$ ion, it is likely IONIC

- If the formula starts with H and is not either water or hydrogen peroxide, the compound is likely an <u>ACID</u>. Which kind?

Hno

H202

- **BINARY ACIDS** contain only two elements

- OXYACIDS contains oxygen

- If the formula contains only nonmetals (and is not an ammonium compound or an acid), the compound is likely MOLECULAR

Examples:

 $P(1_{3}: BINARY MOLECULAR Name: phosphorus trichloride NHY C1: IONIC (ammonium ion) Name: ammonium chloride NHY C1: IONIC (iron - metall) Name: ammonium chloride NAME: phosphoric acid Fe₃* So₄ 3: IONIC (iron - metall) Name: iron(III) sulfate Fe₃* So₄ 2: So₄ 2:$