We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$12 in = 1 f f$$

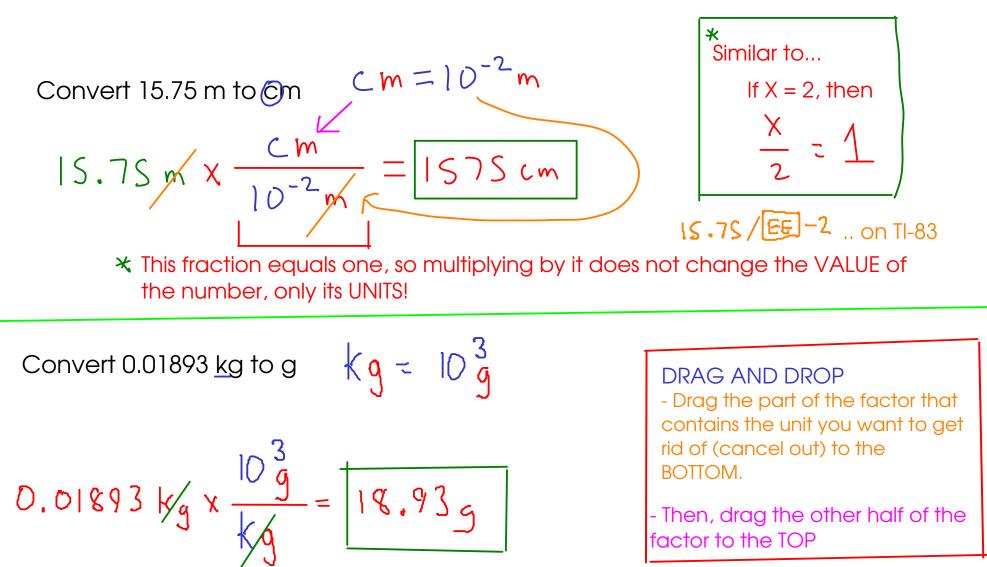
Conversion factors in metric

In the metric system, conversion factors between units may always be made from the metric prefixes!

For example, "kilo-" means
$$10^3$$

 $K = 10^3$
 So
 $\frac{Kg}{Kg} = 10\frac{3}{g}$
 $\frac{Ks}{Ks} = 10\frac{3}{s}$
 $\frac{Km}{Km} = 10\frac{3}{m}$
 $\frac{KL}{KL} = 10^3L$

How do we actually USE a conversion factor?



Convert 14500 mg to kg mg =
$$10\frac{3}{9}$$
 kg = $10\frac{3}{9}$
14500 mg x $\frac{10\frac{3}{9}}{mg}$ x $\frac{kg}{10\frac{3}{9}}$ = 0.0145 kg

Convert 0.147 cm² to m²
$$Cm = 10^{-2}$$

$$0.1417 (m^{2} \times \frac{10^{-2}}{Cm} \times \frac{10^{-2}}{Cm} = \frac{1.47 \times 10^{-5} m^{2}}{(0.0000147 m^{2})}$$

For squared and cubed units, you should use each conversion factor two (for squared) or three (for cubed) times to cancel. Think of it this way ...

$$(m^2 = Cm \times Cm)$$
 $(m^3 = Cm \times Cm \times Cm)$

... and it should make sense!

8.45 kg to mg
$$Kg = 10^{3}g$$
 $Mg = 10^{6}g$
8.45 kg x $\frac{10^{3}g}{Kg} \times \frac{Mg}{10^{6}g} = \frac{845000000 \text{ mg}}{(8.45 \times 10^{9} \text{ mg})}$

88100 kHz to MHz

$$KH_{2} = S^{-1} (Frequency)$$

$$KH_{2} = 10^{6}H_{2}$$

$$MH_{2} = 10^{6}H_{2}$$

$$MH_{2} = 10^{6}H_{2}$$

$$KH_{1} \times \frac{10^{3}H_{2}}{KH_{2}} \times \frac{MH_{2}}{10^{6}H_{2}} = \frac{88.1 MH_{2}}{88.1 MH_{2}}$$

Convert 38.47 in to m, assuming 2.54 cm = 1 in
2.54 cm = in Cm =
$$10^{-2}$$
m
38.47 if x $\frac{2.54}{10}$ x $\frac{10^{-2}}{5m}$ = 0.9771 m

Convert 12.48 km to in

$$2.54$$
 cm = in Km = 10³ m cm = 10² m

$$12.48 \, \mu m \times \frac{10^3 m}{10^7 m} \times \frac{10^7 m}{10^7 m} \times \frac{10^7 m}{10^7 m} \times \frac{10^7 m}{2.54 m} = \frac{191300 \text{ in}}{191300 \text{ in}}$$

- two related concepts that you must understand when working with measured numbers!

<u>Accuracy</u>

- how close a measured number is to the CORRECT (or "true") value of what you are measuring

- "Is it right?"

- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements