${ }^{163}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate (FW=80.052 $\mathrm{g} / \mathrm{mol}$) solid into enough water to make 250. mL of solution.
What's the nature of ammonium nitrate? Acidic? Basic? Neutral?
$\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{NO}_{3}^{-}: \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-}-$-- NITRIC ACID is a STRONG ion is NOT a proton acceptor.
$\mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \overline{\mathrm{NH}_{3}}+\mathrm{H}_{3} \mathrm{O}^{+}$<-- AMMONIA is a WEAK base, meaning that ammonium ion
should be able to donate a proton.

$$
\begin{gathered}
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} t \mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{gathered}
$$

What's Ka for ammonium? Pages A-13 and A-14 don't list one, but they DO list the Kb of ammonia (ammonium's conjugate base)

$$
K_{b, N H_{3}}=1.8 \times 10^{-5}
$$

Since karkb $=1.0 \times 10^{-14}$,

$$
k_{a}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.56 \times 10
$$

164

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{t}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} t \mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}
\end{aligned}
$$

Now, solve the equilibrium problem...

Species	[In, final $]$	Δ	$\left[\epsilon_{\text {quilibrivm }}\right]$
NH_{3}	0	$+X$	x
$\mathrm{H}_{3}{ }^{+}$	0	$+x$	x
$\mathrm{NH}_{4}{ }^{+}$	0.14990	$-x$	$0.14990-x$

Solve ...

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-x}=5,56 \times 10^{-10} \\
& \frac{t^{2} \times 60.54990}{0.14990}=5,56 \times 10^{-10}
\end{aligned}
$$

$$
x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\text { So, } p H=5.04
$$

This pH seems reasonable for an ammonium nitrate solution.

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}\left(\mathrm{aq}_{q}\right)+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$
From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}, K_{b}=1.8 \times 10^{-5}
$$

OH^{-}	O	$+X$	X
NH_{3}	0.10	$-X$	$0.10-x$

$$
\begin{aligned}
& \text { POM }=-\log _{10}\left(1.8 \times 10^{-5}\right) \\
& \text { pOM }=4.74 \\
& S_{0,}, p H=9.26
\end{aligned}
$$

The common-ion effect suppresses the ionization of the ammonia, raising the pH relative to the original; ammonia solution's pH of $11.13 \ldots$

- resist pH change caused by either the addition of strong acid/base OR by dilution Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} base and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
\end{gathered}
$$

(1) Take log of both sides
(2) Multiply by - 1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$[A-] \ldots$ from the salt $[H A] \ldots$ from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

ex: acidic buffer

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{pH}=\mathrm{pha}_{4 \mathrm{HC}_{2} \mathrm{H}_{2}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)
\end{aligned}
$$

ex: basic buffer

$$
\begin{aligned}
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \quad \mathrm{pH}=\mathrm{pKa}_{, \mathrm{NH}_{4}^{+}}+\log _{y}\left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& \quad p W_{a}+\rho K_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=K_{w}
\end{aligned}
$$

${ }^{170}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride ($\mathrm{FW}=53.492 \mathrm{~g} / \mathrm{mol}$) and 29 mL of 18.1 M ammonia diluted to $150 . \mathrm{mL}$ with water.

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

base: NH_{3} ache: $\mathrm{NH}_{4}{ }^{+} \mathrm{NH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
To use the H-H equation, we need to know: (1) The nominal concentration of both the acidic and basic species. (2) the aKa of ammonium ion (the acidic species)
[$\left.\mathrm{NH}_{3}\right]=$? $\quad M_{1} V_{1}=M_{2} V_{2}$ (Ammonia has been DILUTED to 150 mL)

$$
(18.1 \mathrm{~m})(29 \mathrm{~mL})=m_{2}(150 . \mathrm{mL}) ; m_{2}=3.49337333 \mathrm{MNH}_{3}
$$

$\left[\mathrm{NH}_{4}{ }^{+1}\right.$? ?

$$
\begin{aligned}
& {\left[\mathrm{NH}_{4}+\right]=\frac{0.564570403(\mathrm{~mol})}{0.150 \mathrm{~L}}=3.763802687 \mathrm{~m} \mathrm{NH}_{4}{ }^{+}} \\
& \text {pea?; } \mathrm{K}_{b, \mathrm{NH}_{3}}=1.8 \times 10^{-5}, \mathrm{pH}_{b}=4.74, \mathrm{pHa}=14-4.74=9.26 \\
& P H=9.26+\log \left(\frac{3.49333333 \mathrm{MNH}_{3}}{3.763802687 \mathrm{mNH}_{4}+}\right)=9.23 \\
& =9.26+(-0.032)
\end{aligned}
$$

${ }^{71}$ BUFFER SELECTION

- Buffer pH is controlled by the pKa of the acidic species in the buffer.

$$
p H=p K_{a_{\text {, acidil }}}+\log \left(\frac{\text { [basic species }]}{\text { [acidic species] }]}\right)
$$

- Choose a buffer system so that the desired pH is within +/- 1 pH unit of the pKa
- You also need to ensure that the components of the buffer do not interact with your chemistry!

BUFFER PREPARATION

- many buffers are prepared by mixing specific amounts of both components of the Buffer system (acid / conjugate base or base / conuugate acid)

Some buffer "recipes" call for making the conjugate ion FROM the weak

$$
\begin{aligned}
& \text { acid or base ... by adding a STRONG acid or base! } \\
& \qquad \mathrm{NH}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}
\end{aligned} \begin{aligned}
& \text { The reaction of the strong } \\
& \text { acid with the weak base } \\
& \text { goes essentially to } \\
& \text { completion! }
\end{aligned}
$$

If you have more ammonia than nitric acid, you will end up with a solution containing a significant amount of both ammonia and ammonium ion ... a buffer!

BUFFER CAPACITY

- A buffer is good only as long as there is a significant concentration of both the acidic and basic species
- buffer capacity: how much acid or base can a buffer resist before losing its ability to buffer
- Buffer pH depends on the RATIO of acid to base!
 Ratio determines pH; the actual concentrations don't!
- So, if you make a buffer with 1.0M HA and 1.0M A-, it will have the same pH as a buffer with 2.0M HA and 2.0M A- but the 2M buffer will have a higher BUFFER CAPACITY it will resist more additions of acid or base.

173
Buffer calculation: Iris buffer - Tris(hydroxymethyl)-aminomethane

fris base

fris- HCl (conjugate acid of fris base)

Calculate the pH of a buffer made from 50 mL of 0.10 M fris and 50 mL of 0.15 M fris- HCl . Assume volumes add.

$$
\begin{aligned}
& p H=p K_{a, \text { acidic }}+\log \left(\frac{\text { [basic species }]}{\text { [acidic species] }}\right) \\
& \text { [trio]: } m_{1} V_{1}=m_{2} V_{2}(0.10 \mathrm{~m})(50 . \mathrm{mL})=m_{2}(100 \mathrm{~mL}) \\
& 0.050 \mathrm{~m}=\mathrm{m}_{2} \\
& {\left[\text { (fris }-H^{t}\right]:(0,15 m)\left(50, m^{l}\right)=M_{2}\left(100 \mathrm{~m}^{2}\right)} \\
& 0.07 \mathrm{sm}=\mathrm{m}_{2} \\
& \rho H=8.06+\log \left(\frac{0.050 M}{0.075 m}\right)=7.88
\end{aligned}
$$

${ }^{174}$ Take 100. mL of the previous buffer (0.050 M fris / 0.075 M fris- HCl), and add 5.0 mL of 0.10 M HCl . What is the pH of the mixture?

The HCl should react with basic component of the buffer (fris), and change it to its conjugate acid
... so we need to find out the NEW concentrations of each species in the system.

* Solution volume is now 105 mL (100 mL of buffer plus 5 mL of Cl)

$$
p H \approx 8.06+10 g\left(\frac{0.04285) 3 \mathrm{~m}}{0.0761905 \mathrm{~m}}\right)=\square .8 \left\lvert\, \begin{aligned}
& \text { The original } \mathrm{pH} \text { was } \\
& 7.88, \text { so the pH } \\
& \text { dropped by } \\
& 0.07 \mathrm{pH} \text { units. }
\end{aligned}\right.
$$

${ }^{175}$ Compare this 0.07 unit pH change with adding 5.0 mL of 0.10 M HCl to $100 . \mathrm{mL}$ of pure water.
(We're just diluting the acid...)

$$
\begin{aligned}
& m_{1} v_{1}=m_{2} v_{2} \\
& (0.10 \mathrm{~m})(5.0 \mathrm{~mL})=m_{2}(105 \mathrm{ml}) \\
& 0.0047619 \mathrm{~m}=m_{2}
\end{aligned}
$$

Since this is a strong acid, hydronium ion concentration equals nominal acid concentration:

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =0.0047619 \mathrm{M} \\
\mathrm{pH} & =2.32 \quad \begin{array}{l}
\text {... which is a change of } 4.68 \mathrm{pH} \text { units } \\
\text { from water's original } \mathrm{pH} \text { of } 7.00!
\end{array}
\end{aligned}
$$

