To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
M_{1} V_{1}=M_{2} V_{2} \ldots \text {... the "DILUTION EQUATION" }
$$

M_{1} = molarity of concentrated solution
$V_{1}=$ volume of concentrated solution
$M_{2}=$ molarity of dilute solution
$V_{2}=$ volume of dilute solution (toted volume me, nut vol lime of added solvent.')
The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{gathered}
159.80 \mathrm{~g} \mathrm{Br} \\
25.0 \mathrm{~mol} \mathrm{Br}_{2} \\
2 \mathrm{Br}_{2} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{gr}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
\end{gathered}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.1564 \mathrm{smol} B r_{2} & \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}
\end{aligned}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{gAl}=\operatorname{mol} A 1 \\
& 0.10430 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} A 1}{\operatorname{mol} A 1}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!
(1) $159.80 \mathrm{~g}_{2}=\mathrm{mol} \mathrm{Br}_{2}$
(2) 2 mol $A l=3$ mol $B r_{2}$
(3) $26,98 \mathrm{gAl}=\mathrm{mol} \mathrm{Al}$

$$
\begin{gathered}
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \\
(1)
\end{gathered}
$$

Things we can do:

If we have and we need ...	Use ...
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR
MOLES OF A		CONCETRATION (MOLARITY)

${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=\mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY (6.00 M HCl)

$$
\begin{aligned}
&(1) \mathrm{Na}_{2} \mathrm{CO}_{3}-\quad \mathrm{Na}: 2 \times 22.99 \\
&: 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{Na}} \mathrm{Na}_{3} \mathrm{CO}_{3} \\
& 25.0 \mathrm{~g} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \\
& \hline
\end{aligned}
$$

(2) $2 \mathrm{mulHCl}=\operatorname{mol} \mathrm{Na}_{\mathrm{h}_{2} \mathrm{CO}_{3}}$

$$
0.2358713086 \mathrm{mot}_{\mathrm{h}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

102 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY (6.00 M HCl)
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.4717426172 \text { mat VC } 1 \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of } 6.00 \mathrm{~m} \mathrm{HCl}
$$

The problem statement asks us for $m \mathrm{~mL}$ instead of L . Not a big problem ... we can just convert from L-> mL.

$$
m L=10^{-3} \mathrm{~L}
$$

$$
0.0786 \mathrm{~K} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~K}}=78.6 \mathrm{~mL} \text { of } 6.00 \mathrm{mHCl}
$$

103

$$
4 \underset{\substack{\text { a } \\ \text { propylene }}}{42.081 \text { gimul }}+6 \mathrm{NO} \longrightarrow \underset{\substack{\text { acrylonitrile }}}{\mathrm{C}_{3}^{3,064} \mathrm{H}_{3} \mathrm{~N}_{\mathrm{mdl}}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert 651 g propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass acrylonitrile. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C} \mathrm{H}_{6}=\mathrm{mol}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{aligned}
& =821 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}
\end{aligned}
$$

104

$$
\begin{aligned}
& 1 \mathrm{SI} .90 \mathrm{~g} / \mathrm{mul} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume potassium permanganate solution. Use MOLARITY. (0.250 M)
(1) $151.90 \mathrm{gFeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}$
(2) $10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{mul} \mathrm{KMnO}_{4}$
(3) $0.250 \mathrm{mul} \mathrm{Km}_{\mathrm{nO}}^{4} \mathrm{~L}=\mathrm{L}$
$=0.0177 L$-- We need answer in mL , so convert it!

$$
m L=10^{-3 L}
$$

$$
0.0177 \nvdash \times \frac{m L}{10^{-3 K}}=17.7 \mathrm{~mL} \mathrm{ut} 0.250 \mathrm{~m} \mathrm{k} \mathrm{mnO}_{4}
$$

