159

$$
\left.\mathrm{CH}_{3} \mathrm{COCH}(\mathrm{l})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{Ol}\right): \mathrm{A} 4=-1800 \mathrm{~kJ}
$$

What would be the enthapy change when 25 g of water are produced by the reaction?
1 - Convert 25 grams water to moles. Use FORMULA WEIGHT.
2 - Convert moles water to enthalpy change. Use THERMOCHEMICAL EQUATION.

$$
\begin{aligned}
& H_{2} \mathrm{O}: \left.\begin{array}{l}
\mathrm{H}: 2 \times 1.008 \\
0: \frac{1 \times 16.00}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O}
\end{array} \right\rvert\, 3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=-1800 \mathrm{hJ} \mathrm{~J}, ~
\end{aligned}
$$

(1)
(2)

$$
2 \mathrm{SgH} 2 \mathrm{O} \times \frac{\mathrm{mol}_{2} \mathrm{O}}{18.016 \mathrm{~g}_{2} \mathrm{O}} \times \frac{-1800 \mathrm{~kJ}}{3 \mathrm{~mol} \mathrm{H} \mathrm{O}}=-830 \mathrm{~kJ}
$$

This is an EXOTHERMIC reaction. 830 kJ are transferred to the SURROUNDINGS.
The enthalpy change here is the same as Q, as long as we do a constant pressure process.

A few more terms related to enthalpy:

- Enthalpy of vaporization / heat of vaporization: The enthalpy change on vaporizing one mole of a substance. (from liquid to vapor)
- Enthalpy of fusion / heat of fusion: The enthalpy change when a mole of liquid changes to the solid state.

160 FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25 C and 1 atm pressure.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{CO}_{2}(\mathrm{~g}): & \left.C(\mathrm{~s}, \text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta 4=-393,5 \mathrm{kj}\right]
\end{aligned} \\
& C O(g): C(s, g \text { ruphite })+\frac{1}{2} O_{2}(g) \rightarrow C O(g) ; \Delta H=-110.5 \mathrm{~kJ}
\end{aligned}
$$

you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25 C and 1 atm is ZERO.

$$
\Delta H_{f, O}^{0} O_{2}(g)=O \mathrm{~kJ} / \mathrm{mol}
$$

- What are formation reactions good for?
... finding enthalpies for more interesting reactions!

$\left.2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2} \mathrm{Cg}\right)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=$? $\quad \stackrel{\text { From }}{\mathrm{A}-\mathrm{y},}$
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add. k

Hess' Law using enthalpy of formation:

$$
\begin{aligned}
& \Delta H=\sum \Delta H_{\text {f. projects }}-\sum \Delta H_{f_{1} \text { reactants }} \\
& 2 \mathrm{C}_{2}^{226.7} \mathrm{H}_{2}(\mathrm{~g})+{ }^{0} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}^{-391.5}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=\text { ? } \\
& \Delta H=[4(-393.5)+2(-241.8)]-[2(226.7)+5(0)] \\
& =-2 s 11 \omega J
\end{aligned}
$$

See Appendix C in the textbook for enthalpy of formation data: p A-8 to A-11

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero
- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!
${ }^{163}$ Example problems:
FORMULA WEIGHTS in g/mol

$$
2 \mathrm{H}_{2}^{2.016}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}^{18.02}(\mathrm{~g}) ; \Delta H=-484 \mathrm{~kJ}
$$

Calculate the enthalpy change for the combustion of 1.00 kg of hydrogen gas.

1 - Convert 1.00 kg hydrogen gas to moles. Use formula weight.
2 - Convert moles hydrogen gas to enthalpy change. Use thermochemical equation.
(1) $2.016 \mathrm{gH}_{2}=\mathrm{mul} \mathrm{H}_{2}, \mathrm{Kg}=10^{3} \mathrm{~g}$
(2) $2 \operatorname{mol} H_{2}=-484 \mathrm{HJ}^{3}$

$$
1.00 \mathrm{~kg} \mathrm{H} 2 \times \frac{10^{3} g}{\mathrm{Kg}_{g}} \times \frac{\mathrm{mul} \mathrm{H}_{2}}{2.016 \mathrm{gH}_{2}} \times \frac{-484 \mathrm{HJ}}{2 \mathrm{~mol} \mathrm{H}_{2}}=\begin{array}{|}
-120000 \mathrm{KJ} \\
\mathrm{per} \mathrm{hg} \mathrm{H}
\end{array}
$$

${ }^{164} \quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-906 \mathrm{~kJ}$
What is the enthalpy change when 150. L of nitrogen monoxide are formed by this reaction at 25.0 C and 1.50 atm pressure?

1 - Convert 150. L NO to moles. Use IDEAL GAS EQUATION.
2 - Convert moles NO to enthalpy change. Use THERMOCHEMICAL EQUATION.

$$
\text { (1) } \begin{aligned}
P V & =n R T \mid P=1.50 \mathrm{~atm} \quad V=150 . \mathrm{L} \\
n & =\frac{P V}{R T} \left\lvert\, R=0.08206 \frac{\mathrm{~L} \text {-arm }}{\mathrm{mol} / \mathrm{k}} T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~h}\right. \\
n_{N O} & =\frac{(1.50 \mathrm{~atm})(150 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L}-\mathrm{abm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~h})}=9.194822849 \mathrm{~mol} \mathrm{NO}
\end{aligned}
$$

(2) $4 \mathrm{molno}=-906 \mathrm{~kJ}$

$$
9.194822849 \mathrm{~mol} \mathrm{NO} \times \frac{-906 \mathrm{~kJ}}{4 \mathrm{molNO}}=-2080 \mathrm{~kJ}
$$

