REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.

- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.

- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?

- at high pressure, molecules would be much closer together!

- When would it be FALSE that attractive and repulsive forces would be negligible?

- at high pressure, attractions and repulsions should be stronger!

- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules

-The gas laws are highly inaccurate near the point where a gas changes to liquid!

- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.

van der Waals equation

- an attempt to modify PV = nRT to account for several facts.

- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$PV = n R T \int \text{Ideal gas equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb \right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb \right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb \right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb \right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(V - nb \right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(P + \frac{n^{2} \alpha}{V^{2}}\right) = n R T \int \text{van der Waals}_{equation}$$

$$\left(P + \frac{n^{2} \alpha}{V^{2}}\right) \left(P + \frac{n^{2} \alpha}{V^{2}}\right) = n R T \int$$

2500 L of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$|+2+C|_2 \rightarrow 2HC|$$

1 - Convert 2500L chlorine gas to moles using IDEAL GAS EQUATION

2 - Convert moles chlorine gas to moles HCI using CHEMICAL EQUATION

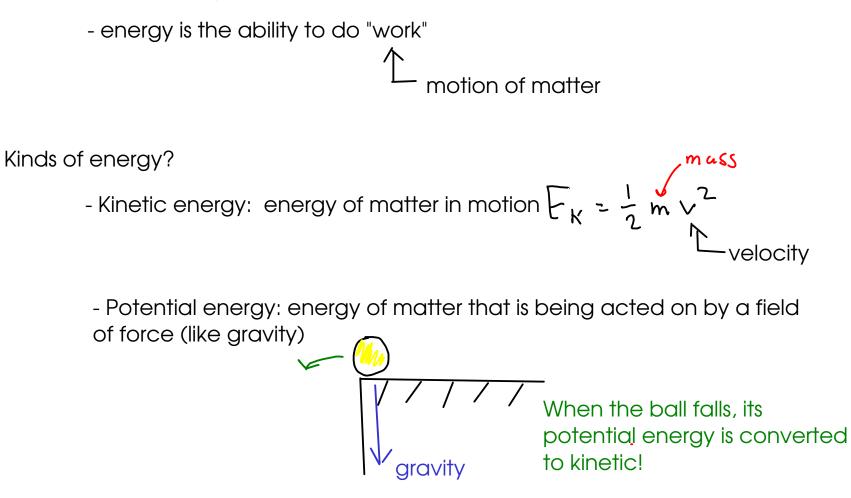
3 - Convert moles HCI to mass HCI using FORMULA WEIGHT

148

$$2HCI + Na_2CO_3 \rightarrow CO_2 + H_2O + 2NaCI$$

If 48.90 mL of 0.250 M HCI solution reacts with sodium carbonate to produce 50.0 mL of carbon dioxide gas at 290.2 K, what is the pressure of the carbon dioxide gas?

- 1 Convert 48.90 mL of HCI solution to moles. Use MOLARITY.
- 2 Convert moles HCI to moles carbon dioxide. Use CHEMICAL EQUATION.
- 3 Convert moles carbon dioxide to gas pressure. Use IDEAL GAS EQUATION.


$$\begin{array}{c} \hline 0 & 0.250 \text{ mul} \text{ H}(I=L \text{ mL}=10^{-3} \text{ (i) } 2 \text{ mul} \text{ H}(I=\text{ mul}) \text{ (oq} \\ \hline 48.90 \text{ ml} \text{ x} \frac{10^{-3} \text{ L}}{\text{mL}} \text{ x} \frac{0.250 \text{ mul} \text{ H}(I}{\text{L}} \text{ x} \frac{\text{mul}}{2 \text{ mul} \text{ H}(I} = 0.0061125 \text{ mul}) \text{ (oq} \\ \hline 0 & \boxed{2} \\ \hline \hline 3 \text{ PV= nRT} & \text{ n=0.0061125 mul} \text{ (oq} & \text{T=290.2k} \\ P=\frac{nRT}{V} & \text{ R=0.08206 } \frac{1-alm}{h_{01}k} & \text{ V=50.0 mL=0.0500L} \\ P=\frac{(0.0061125 \text{ mul})(0,08206 }{(0,08206 } \frac{1-alm}{h_{01}k})(290.2k)} = \boxed{2.91 \text{ alm}} \end{aligned}$$

- thermodynamics: the study of energy transfer

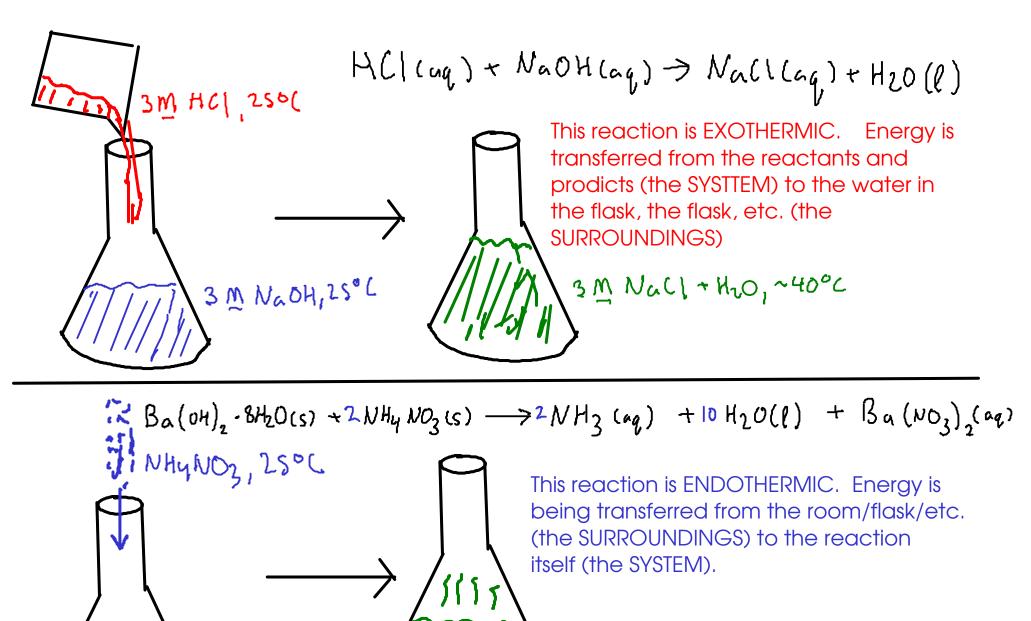
Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.

- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U" related to the kinetic and potential energy of atoms, molecules, and their component parts.


- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)

Q:heat

SYSTEM: the object or material under study

SURROUNDINGS: everything else

Type of process	Energy is	Sign of Q	Temp of SURROUNDINGS
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS		increases

nim

Ba(04), 8420,25°C

NH3, H20, Bu(NO3)2(04), CO°C