CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{gathered}
159.80 \mathrm{~g} \mathrm{Br} \\
25.0 \mathrm{~mol} \mathrm{Br}_{2} \\
2 \mathrm{Br}_{2} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{gr}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
\end{gathered}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.1564 \mathrm{smol} B r_{2} & \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}
\end{aligned}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{gAl}=\operatorname{mol} A 1 \\
& 0.10430 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} A 1}{\operatorname{mol} A 1}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!
(1) $159.80 \mathrm{~g}_{2}=\mathrm{mol} \mathrm{Br}_{2}$
(2) 2 mol $A l=3$ mol $B r_{2}$
(3) $26,98 \mathrm{gAl}=\mathrm{mol} \mathrm{Al}$

$$
\begin{gathered}
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \\
(1)
\end{gathered}
$$

Things we can do:

If we have and we need ...	Use ...
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR
MOLES OF A		CONCETRATION (MOLARITY)

${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION
3 - Convert moles HCl to volume HCl solution. Use MOLARITY.
(1)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{4}: 2 \times 22.99 \\
& C: 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}} \mathrm{Na}_{3}=\operatorname{mol~} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S}_{1} 99 \mathrm{gan}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{Na}_{3}
\end{aligned}
$$

(2) 2 mol $\mathrm{HCl}=\operatorname{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na} \mathrm{al}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

${ }_{102}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NuC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION
3 - Convert moles HCl to volume HCl solution. Use MOLARITY.
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of }
$$

Since the problem asks for the volume in mL , we do a quick unit conversion.

$$
m L=10^{-3} L
$$

$$
0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=\begin{aligned}
& 78.6 \mathrm{~mL} \text { of } \\
& 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

104

$$
\begin{aligned}
& 42.081 \mathrm{~g} / \mathrm{mul} \\
& \text { S3,064 } 91 \mathrm{mul} \\
& 4 \mathrm{C}_{3} \mathrm{H}_{6}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { propylene } \\
& \text { acrylonitrile }
\end{aligned}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert mass propylene to moles. Use FORMULA WEIGHT
2 - Convert moles propylene to moles acrylonitirle. Use CHEMICAL EQUATION
3 - Convert moles acrylonitrile to mass acrylonitrile. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}={\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}}$
(2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{aligned}
6 \mathrm{Sl} & \mathrm{~g}_{5} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{C}_{3}}{42.08 \mathrm{~g}_{6} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{mot} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{mot} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\operatorname{mot} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}} \\
& =82 \mathrm{~g}_{3} \mathrm{H}_{3} \mathrm{~N}
\end{aligned}
$$

105

$$
\begin{aligned}
& 1 \mathrm{SI} .90 \mathrm{~g} / \mathrm{mol} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permangenate are needed to react with 3.36 g of iron(II) sulfate?

1 - Convert 3.36 grams iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume. Use MOLARITY
(1) $151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mul} \mathrm{FeSO}_{4}$ (2) $10 \mathrm{mul} \mathrm{FeSO}_{4}: 2 \mathrm{~mol} \mathrm{KmnO}_{4}$
(3) $0.250 \mathrm{~mol} \mathrm{k}_{n-\mathrm{O}}^{4} \mathrm{~L}$

We need our answer in mL , so convert ...

$$
0.0177 L \times \frac{m L}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{~m} \mathrm{~K} \mathrm{MnO}_{4}
$$

CONCEPT OF LIMITING REACTANT

- When does a chemical reaction STOP?

$$
\begin{aligned}
& \left.2 \mathrm{Mg}_{\mathrm{g}}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta}>2 \mathrm{mgO}_{\mathrm{m}} \mathrm{~s}\right) \\
& \text { Magnesium }
\end{aligned}
$$

- When does this reaction stop? When burned in open air, this reaction stops when all the MAGNESIUM STRIP is gone. We say that the magnesium is LIMITING.
- This reaction is controlled by the amount of available magnesium
- At the end of a chemical reaction, the LIMITING REACTANT will be completely consumed but there may be amount of OTHER reactants remaining. We do chemical calculations in part to minimize these "leftovers".

$$
\begin{aligned}
& \text { These are often called "excess" reactants, or reactants present } \\
& \text { "in excess" }
\end{aligned}
$$

