- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

water molecules per formula unit of compound

CuSoy

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated

copper (11) sulfate pentahydrate

"copper(II)"?

MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release H Tions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

- contain hydrogen and one other element

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT

- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

SECOND ELEMENT

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES!
THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

Examples:

BF3

boron trifluoride (1207

dichlorine hept(a)oxide C 0

carbon monoxide CO_2

carbon dioxide

*Note: metalloids like boron behave chemically like nonmetals do.

carbon tetrachloride

CC14

dihydrogen monoxide

H₂C

dinitrogen tetrafluoride

My Cl2: This one is MAGNESIUM CHLORIDE, not magnesium dichloride. Why not? It's not a binary molecule at all; it's an ionic compound.

How to tell? metal/nonmetal combinations are typically ionic.

ACIDS

- named after the element (other than hydrogen) they contain
- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

```
HF: hydrofluoric acid* dissolves glass!

HCI: hydrochloric acid

HBC: hydrobromic acid

HT: hydroiodic acid
```

- (i) OXYACIDS
 - Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS
 - These acids are not true ionic compounds, but they interact with water to PRODUCE ions!
 - named based on the polyatomic ion they contain, with an ending change:
 - 1) ions ending in -ATE form acids ending in -IC
 - (1)- ions ending in -ITE form acids ending in -OUS

Sulfate H_2 Soy H_3 Poy H_2 So H_2 So H_3 Poy H_2 So H_3 Sulfurious H_3 Poy H_3 Poy H_3 Sulfurious H_3

acetic acid

nitrous acid

based on NITRITE

carbonic acid

based on CARBONATE

The number of hydrogen atoms at the beginning of the formula equals the charge of the anion the acid is based on! - You need to be able to tell, by looking at a name OR a formula, what kind of compound you are working with!

DON'T GET THE NAMING SYSTEMS MIXED UP! EACH KIND OF COMPOUND IS NAMED WITH ITS OWN SYSTEM!

FROM A CHEMICAL NAME

- If the name has a Roman numeral, the name of a metal, or "ammonium", the compound is likely IONIC
- If the name has a Greek prefix AND the prefix is NOT in front of the word "hydrate", the compound is <u>BINARY MOLECULAR</u>
- If the name contains the word "acid":
 - ... and starts with "hydro-", then the compound is a BINARY ACID
 - ... and does not start with "hydro-", the compound is an OXYACID

- if the formula contains a metal or the NH $^{+}_{4}$ ion, it is likely I<u>ONIC</u>

 - If the formula starts with H and is not either water or hydrogen peroxide, the compound is likely an ACID. Which kind?
 - BINARY ACIDS contain only two elements
 - OXYACIDS contains oxygen
- If the formula contains only nonmetals (and is not an ammonium compound or an acid), the compound is likely MOLECULAR

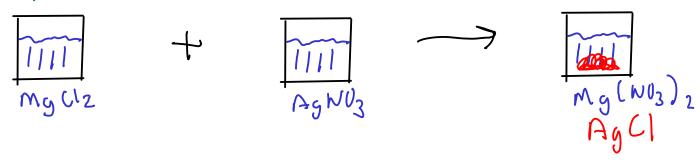
Examples:

$$P(1) : \frac{\text{BINARY MOLECULAR}}{\text{Name: phosphorus trichloride}} \quad \text{NHy} \quad \text{ONIC (ammonium ion)} \\ \cdot \text{Name: ammonium chloride}$$

$$H_3 PO_n : OXYACID (hydrogen, phosphate) Fe (off)_2 : IONIC (starts with a metal) Name: phosphoric acid$$

- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$\text{MgCl}_{2}(aq) + 2 \text{AgNO}_{3}(aq) \xrightarrow{\text{"yields"}} 2 \text{Ag(|(s)} + \text{Mg(NO}_{3})_{2}(aq)$$


REACTANTS - materials that are needed fot a reaction

PRODUCTS - materials that are formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others

PHASE LABELS - give the physical state of a substance:

- (s) -solid
- (I) liquid
- (g) gas
- (aq) aqueous. In other words, dissolved in water

CHEMICAL EQUATIONS

$$2 \text{ Mg(s)} + O_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)}$$

REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

- \triangle apply heat
- catalysts substances that will help reaction proceed faster
- other conditions, such as required temperatures
- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions