161 FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25 C and 1 atm pressure.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{CO}_{2}(\mathrm{~g}): & \left.C(\mathrm{~s}, \text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta 4=-393,5 \mathrm{kj}\right]
\end{aligned} \\
& C O(g): C(s, g \text { ruphite })+\frac{1}{2} O_{2}(g) \rightarrow C O(g) ; \Delta H=-110.5 \mathrm{~kJ}
\end{aligned}
$$

you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25 C and 1 atm is ZERO .

$$
\Delta H_{f, O}^{0} O_{2}(g)=O \mathrm{~kJ} / \mathrm{mol}
$$

- What are formation reactions good for?
... finding enthalpies for more interesting reactions!

$\left.2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2} \mathrm{Cg}\right)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=$? $\quad \stackrel{\text { From }}{\mathrm{A}}$,
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add. k

Hess' Law using enthalpy of formation:

$$
\begin{aligned}
& \Delta H=\sum \Delta H_{\text {f. products }}-\sum \Delta H_{f_{1} \text { reactants }} \\
& 2 \mathrm{C}_{2}^{226.7} \mathrm{H}_{2}(\mathrm{~g})+{ }^{0} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}^{-391.5}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=\text { ? } \\
& \Delta H=[4(-393.5)+2(-241.8)]-[2(226.7)+5(0)] \\
& =-2 s 11 \omega J
\end{aligned}
$$

See Appendix C in the textbook for enthalpy of formation data: p A-8 to A-11

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero
- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!

164 Example problems:
FORMULA WEIGHTS in g/mol

$$
\left.2 \mathrm{H}_{2}^{2.016}+\mathrm{g}\right)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \begin{gathered}
18.02
\end{gathered} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-484 \mathrm{~kJ}
$$

Calculate the enthalpy change for the combustion of 1.00 kg of hydrogen gas.
1 - Convert 1.00 kg hydrogen gas to moles. Use FORMULA WEIGHT.
2 - Convert moles hydrogen gas to enthalpy change. Use THERMOCHEMICAL EQUATION
(1) $2.016 \mathrm{~g} \mathrm{H}_{2}=\operatorname{mol~H} \quad \mathrm{Kg}=10^{3} \mathrm{~g}$
(2) $2 \mathrm{~mol} \mathrm{H}_{2}=-484 \mathrm{~kJ}$

$$
1.00 \mathrm{~kg} \mathrm{H}, \times \frac{10^{3} \mathrm{~g}}{\mathrm{~kg}} \times \frac{\text { mat } \mathrm{H}_{2}}{2.016 \mathrm{gH}} \times \frac{-484 \mathrm{~kJ}}{2 \mathrm{mot} \mathrm{H}_{2}}=\begin{aligned}
& -120000 \mathrm{~kJ} \\
& \mathrm{pos} \mathrm{~kg} \mathrm{H}
\end{aligned}
$$

${ }^{165} \quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-906 \mathrm{~kJ}$
What is the enthalpy change when 150 . L of nitrogen monoxide are formed by this reaction at 25.0 C and 1.50 atm pressure?

1 - Convert 150. L NO to moles using IDEAL GAS EQUATION
2 - Convert moles NO to enthalpy change using THERMOCHEMICAL EQUATION

$$
\begin{aligned}
\text { (1) } P V & =n R T \\
n & \left.=\frac{P V}{R T} \right\rvert\, R=1.50 \text { atm } \quad V=150 . \mathrm{L} \\
n_{N O} & =\frac{(1.50 \mathrm{arm})(150 . \mathrm{L})}{\left(0.08206 \frac{\mathrm{l} \text { arm }}{\text { molar })}(298.2 \mathrm{~K})\right.}=9.194822849 \mathrm{mul} \mathrm{NO}
\end{aligned}
$$

(2) $4 \operatorname{mol} N O=-906 k J$

$$
9.194822849 \text { mol A NO } \times \frac{-906 \mathrm{~kJ}}{4 \text { mot AOO }}=-2080 \mathrm{~kJ}
$$

$160 \quad 34.086 \mathrm{~g}$ mol \quad Heat of formation / enthalpy of formation!

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g}) \xrightarrow{-20.50} \text { (Appendix C) }
$$

What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted?
1-Calculate the entahlpy change for the reaction as written. Use Hess's Law.
2 - Convert 25.0 grams hydrogen sulfide to moles using FORMULA WEIGHT.
3 - Convert moles hydrogen sulfide to enthalpy change using THERMOCHEMICAL EQUATION.
$\Delta H=\sum \Delta H_{i}^{0}$ products $-\sum \Delta H_{F}^{\circ}$ reactants
(1) $=[2(-285.8)+2(-296.8)]-[2(-20.50)+3(0)]$

$$
=-1124.2 \mathrm{~kJ}
$$

So the THERMOCHEMICAL EQUATION is ...

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g}) ; \Delta H=-1124.2 \mathrm{~kJ}
$$

(2) $34.086 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}=\mathrm{mul} \mathrm{H} \mathrm{H}_{2} \mathrm{~S}$ (3) $2 \mathrm{mul} \mathrm{H}_{2} \mathrm{~S}=-1124.2 \mathrm{~kJ}$

$$
25.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S} \times \frac{\mathrm{mul} \mathrm{H}}{34.086 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}} \times \frac{-1124.2 \mathrm{~kJ}}{2 \mathrm{mul} \mathrm{H}_{2} \mathrm{~S}}=-412 \mathrm{~kJ}
$$

167 propane

$$
\mathrm{C}_{3}^{\downarrow} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-2043 \mathrm{~kJ}
$$

Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kJ of heat using the reaction above.
1 - Convert the 565 kJ energy requirement to moles propane using THERMOCHEMICAL EQUATION 2 - Convert moles propane to volume using IDEAL GAS EQUATION

$$
\begin{aligned}
& \text { (1) } \operatorname{mol} C_{3} H_{8}=-2043 \mathrm{~kJ} \quad \begin{array}{l}
\text { Since the reaction is the syste } \\
\text { energy requirement gets an } \\
\text { sign. The reaction gives up t } \\
\text { energy! }
\end{array} \\
& \left.-565 \mathrm{~kJ} \times \frac{\operatorname{mol} C_{3} H_{8}}{-2043 \mathrm{~kJ}}=0.27655408\right) 1 \mathrm{~mol}_{3} \mathrm{C}_{8}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& P V=n R T \mid P=1,08 \text { atm } \quad R=0,08206 \frac{\text { Lar }}{\text { mulch }} \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{l}
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~W} \\
n=0.2765540871 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}
\end{array}\right. \\
& V=\frac{\left.(0.27655408) 1 \mathrm{~mol}_{3} \mathrm{H}_{8}\right)\left(0.08206 \frac{\mathrm{~L} \text { arm }}{\text { bul. } \mathrm{Lr}}\right)(298.2 \mathrm{~h})}{(1.08 \mathrm{~atm})} \\
& =6.27 \mathrm{~L} \text { of } \mathrm{C}_{3} \mathrm{H}_{8} \text { @ } 25.0^{\circ} \mathrm{C}+1.08 \mathrm{avm}
\end{aligned}
$$

