What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; P_{1}=0.950 \mathrm{~atm} \quad \\
& V_{1}=7.67 \mathrm{~L} \quad \\
& P_{2}=1 \mathrm{~atm} \\
& T_{1}=298.2 \mathrm{k} \quad V_{2}=? \\
& \frac{(0.950 \mathrm{arm})(7.67 \mathrm{~L})}{(298.2 \mathrm{k})}=\frac{(1 \mathrm{arm}) V_{2}}{(273.2 \mathrm{k})} \\
& \begin{array}{l}
6.68 \mathrm{~L} \\
\mathrm{at} 5 \mathrm{Tp}
\end{array}=V_{2}
\end{aligned}
$$

Alternate solution: Since we already know how many moles of carbon dioxide we have (we calculated it in the previous problem), we could also use the ideal gas equation with the STP conditions to find the new volume. (You'll get the same answer as we did here...)

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

At $300,{ }^{\circ} \mathrm{C}$, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 15.0 grams of ammonium nitrate?

To simplify the problem, we will calculate TOTAL MOLES OF GAS instead of each gas separately.	$\mathrm{F}_{\mathrm{w}} \mathrm{NH}_{4} \mathrm{NO}_{3} 280.052 \mathrm{~g} / \mathrm{mol}$

1 - Convert 15.0 g ammonium nitrate to moles using FORMULA WEIGHT.
2 - Convert moles ammonium nitrate to TOTAL MOLES GAS using CHEMICAL EQUATION
3 - Convert TOTAL MOLES GAS to volume using IDEAL GAS EQUATION

$$
\begin{aligned}
& \text { (1) } 80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=\text { mum } \mathrm{NH}_{4} \mathrm{NO}_{3} \text { (2) } 2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}=7 \mathrm{~mol} \mathrm{gas}(2+1+4) \\
& \text { (1) } \\
& 15.0 \mathrm{y} \mathrm{NH} \mathrm{NO}_{3} \times \frac{\mathrm{mul} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.052 \mathrm{~g} \mathrm{NH} 44 \mathrm{NO}_{3}} \times \frac{7 \mathrm{~mol} \mathrm{gas}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}=0.6558237146 \mathrm{~mol} \mathrm{gas}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } P V=n R T \quad P=1,00 \mathrm{arm} \quad n=0.6558237146 \mathrm{~mol} \text { gas } \\
& V=\frac{n R T}{P} \quad R=0.08206 \frac{\mathrm{~L} \text { firm }}{\text { mol } \mathrm{k}} \quad T=300 .{ }^{\circ} \mathrm{C}=573 \mathrm{~K} \\
& V=\frac{(0.6558237146 \mathrm{~mol} \mathrm{gas})\left(0.08206 \frac{\mathrm{Laim}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(573 \mathrm{~K})}{(1,00 \mathrm{arm})}=30.8 \mathrm{~L}
\end{aligned}
$$

REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules fast (high T) slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
van der Walls equation
- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T]_{\text {realocasequation }} \\
& (P+\underbrace{\left.\frac{n^{2} a}{V^{2}}\right)(V-n b)}_{\text {attempts to account for molecular size }}=n R T] \begin{array}{l}
\text { van der Walls } \\
\text { equation }
\end{array}
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. p 208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}:-a=12.56 \quad b=0,08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$

149
$250 \overline{0} \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500L chlorine gas to moles using IDEAL GAS EQUATION
2 - Convert moles chlorine gas to moles HCl using CHEMICAL EQUATION
3 - Convert moles HCl to mass HCl using FORMULA WEIGHT

$$
\begin{aligned}
& \text { (1) } P V=n R T \quad P=1.00 \mathrm{~atm} \quad V=2500 \mathrm{~L} \\
& n=\frac{P V}{R T} \left\lvert\, R=0.08206 \frac{\mathrm{Loutm}}{\mathrm{mul} \cdot \mathrm{~K}} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}\right. \\
& n=\frac{(1.00 \mathrm{arm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Loarm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{k})}=102.1646983 \mathrm{mul} \mathrm{Cl}_{2} \\
& \text { (2) } \left.\mathrm{mol} \mathrm{Cl} \mathrm{I}_{2}=2 \mathrm{~mol} \mathrm{HCl}(3) \mathrm{HCl}-\frac{H: 1 \times 1.008}{C 1: \frac{1 \times 35,45}{36.458} \mathrm{~g} \mathrm{HCl}=\mathrm{mul} \mathrm{HCl}} \right\rvert\, \mathrm{Kg}=10 \mathrm{~g}
\end{aligned}
$$

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of 0.250 M HCl solution reacts with sodium carbonate to produce 50.0 mL of carbon dioxide gas at 290.2 K , what is the pressure of the carbon dioxide gas?
1 - Convert 48.90 mL of 0.250 M HCl to moles using MOLARITY.
2 - Convert moles HCl to moles carbon dioxide gas using CHEMICAL EQUATION
3 - Convert moles carbon dioxide gas to pressure using IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 0.250 \mathrm{mul} H C 1=L \quad m L=10^{-3} \mathrm{~L} \\
& \text { (2) } 2 \mathrm{mul} H C 1=m u l C O_{2} \\
& 48.90 \mathrm{~mL} \times \frac{10^{-3 L}}{m L} \times \frac{0.250 \mathrm{mul} \mathrm{HCl}}{L} \times \frac{\mathrm{mulCO}}{2 \mathrm{mulHCl}}=0.0061125 \mathrm{mul} \mathrm{CO}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } P V=n R T \quad n=0.0061125 \mathrm{mul} \mathrm{CO} 2 R=0.08206 \frac{\mathrm{~L}-\mathrm{arm}}{\mathrm{~mol} \cdot \mathrm{~h}} \\
& P=\frac{n R T}{V} T=290.2 \mathrm{~K} \quad V=50.0 \mathrm{~mL} \\
& 50.0 \mathrm{~mL} \times \frac{10^{-3 L}}{m L}=0.0500 \mathrm{~L} \\
& \left.P=\frac{(0.0061125 \mathrm{mul} \mathrm{Co}}{2}\right)\left(0.08206 \frac{\mathrm{latm}}{\mathrm{mul} \cdot \mathrm{k}}\right)(290.2 \mathrm{~K})=2.91 \mathrm{~atm}
\end{aligned}
$$

