

- To account for this added complexity, a more sophisticated model had to be devised: QUANTUM THEORY. Quantum theory is the modern picture of the atom and its electron cloud.
- Bohr's model predicted that energy levels (called SHELLS) were enough to describe completely how electrons were arranged around an atom. But there's more to it!

SHELL: Equivalent to Bohr's energy levels. Electrons in the same SHELL are all the same distance from the nucleus. They all have SIMILAR (but not necessarily the SAME) energy.

- Shells are numbered (1-... - Elements on the periodic table have shells numbered from 1 to 7)
- Higher numbers correspond to greater distance from the nucleus and greater energy, and larger size!
- Higher shells can hold more electrons than lower shells!

SUBSHELLS: Within a SHELL, electrons may move in different ways around the nucleus! These different "paths" are called SUBSHELLS

- SHAPES of regions of space that electrons are able to exist in.

"p" subshell
(a dumbbell shaped region)

"d" subshell
- Some atoms also have "f" subshells (not pictured)

See p 334-335 for nicer drawings of the subshells.

ORBITALS - are specific regions of space where electrons may exist

- The SHAPE of an orbital is defined by the SUBSHELL it is in
- The ENERGY of an orbital is defined by both the SHELL the orbital is in AND the kind of SUBSHELL it is in
- Each orbital may, at most, contain TWO ELECTRONS

ARRANGEMENT OF SHELLS, SUBSHELLS, AND ORBITALS

- Shells are numbered. Each shell can contain the same number of SUBSHELLS as its number:

```
1st shell: ONE possible subshell (s)
2nd shell: TWO possible subshells (s, p)
3rd shell: THREE possible subshells (s, p, d)
4th shell: FOUR possible subshells (s, p, d, f)
... and so on
```

- Each subshell can contain one or more ORBITALS, depending on how many different ways there are to arrange an orbital of that shape around the nucleus.

One possible orientation

Maximum 2 electrons in 1 orbital

- There are five possible orbitals in a "d" subshell, and 7 possible orbitals in an "f" subshell!

Maximum 10 electrons
in 5 orbitals
$(\sec$ p 335$)$

Maximum 14 electrons
in 7 orbitals

- We can map out electrons around an atom using an energy diagram:

- A shorthand way to write about electron arrangement around an atom.

$M g: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
Al: $1 s^{2} 2 s^{2} 2 \rho^{6} \frac{3 s^{2} 3 p^{1}}{1}$
Valence electrons are the ones in the outermost SHELL, not just the last subshell. Aluminum has THREE valence electrons.
wide ELECTRON CONFIGURATION AND THE PERIODIC TABLE

"s" block: last electron in these atoms is in an "s" orbital!
" P " block: last electron in these atoms is in a "p" orbital!
"d" block: last electron is these atoms is in a "d" orbital
- To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

	IA																	VIIIA
	H	IIA											IIIA			IA		A
	Li	De											B	C	N	O	F	Ne
	Na	Mg	IIIB								IB	IIB	Al	Si	(1)	S	Cl	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	*/a	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	Fr	Ra	-c	Rf	Db	Sg	Bh	Hs	M \dagger	*"inner" transition metals go here								

Example: Phosphorus (P): $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
Shortcut: You may use "noble gas core" notation - which starts from the previous noble gas rather than hydrogen. This is useful for big atoms.

$$
[\mathrm{Ne}] 3 s^{2} 3 p^{3}
$$

