$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert the 25.0 g of bromine to moles. Use formula weight. $B r_{2}: \frac{2 \times 79.90}{159.8}$
$159.8 \mathrm{~g} \mathrm{Br}_{2}=$ mol Br 2

$$
25.0 \mathrm{~g} B r_{2} \times \frac{\mathrm{mol} B r_{2}}{159.8 \mathrm{~g} B r_{2}}=0.1564455569 \mathrm{~mol} B r_{2}
$$

(2) Convert the moles bromine to moles aluminum. Use chemical equation.

$$
2 \mathrm{molAl}=3 \mathrm{~mol} \mathrm{~B}_{2}
$$

$$
0.1564455569 \mathrm{~mol} \mathrm{Br}_{2} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} r_{2}}=0.104297038 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert the moles aluminum to mass. Use formula weight. AI :26.98

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=\operatorname{mul~Al} \\
& 0.104297038 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{mul} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!
1 - Convert the 25.0 g of bromine to moles. Use formula weight.
2 - Convert the moles bromine to moles aluminum. Use chemical equation.
3 - Convert the moles aluminum to mass. Use formula weight.
(1) 159,8 y $B r_{2}=\mathrm{mol} B r_{2}$
(2) $2 \mathrm{~mol} A \mid=3 \mathrm{~mol} B r_{2}$
(3) $26.98 \mathrm{~g} \mathrm{Al}=\mathrm{mul} \mathrm{Al}$

$$
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{\mathrm{mol} B r_{2}}{159.8 \mathrm{~g} B_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{~m}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{mul} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
$$

${ }^{150}$ Example:
How many grams of sodium carbonate is needed to make 15.5 grams of sodium chloride, assuming there is sufficient hydrochloric acid for the reaction

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 15.5 g NaCl to moles. Use FORMULA WEIGHT.
2 - Convert mol NaCl to mol sodium carbonate. Use BALANCED CHEMICAL EQUATION.
3 - Convert mol sodium carbonate to grams sodium carbonate. Use FORMULA WEIGHT.

$$
\begin{aligned}
& \text { (1) } \mathrm{NaCl}-\mathrm{Na}_{\mathrm{a}} 1 \times 22.99 \\
& \mathrm{Cl}: \frac{1 \times 35.4 \mathrm{~S}}{58.44 \mathrm{~g} \mathrm{NaCl}}=\mathrm{mol} \mathrm{NaCl} \\
& 15.5 \mathrm{gNaCl} \times \frac{\mathrm{mol} \mathrm{NaCl}_{\mathrm{a}}}{58.44 \mathrm{~g} \mathrm{NaCl}}=0.265229295 \mathrm{mul} \mathrm{NaCl}
\end{aligned}
$$

(2) $\mathrm{mol} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3}=2 \mathrm{~mol} \mathrm{NaCl}$

$$
0.265229295 \text { mut } \mathrm{AaCT} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{2 \mathrm{NaCT}}=0.1326146475 \mathrm{~mol}_{\mathrm{Na}}^{2} \mathrm{Na}_{3}
$$

151
Example:
How many grams of sodium carbonate is needed to make 15.5 grams of sodium chloride, assuming there is sufficient hydrochloric acid for the reaction

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 15.5 g NaCl to moles. Use FORMULA WEIGHT.
2 - Convert mol NaCl to mol sodium carbonate. Use BALANCED CHEMICAL EQUATION.
3 - Convert mol sodium carbonate to grams sodium carbonate. Use FORMULA WEIGHT.

$$
\begin{aligned}
& \text { (3) } \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}: 2 \times 22.99 \\
& \text { c: }|\times 12.0| \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2}\left(\mathrm{O}_{3}=\mathrm{mol} \mathrm{Na}\right.} \mathrm{CO}_{3} \\
& 0.1326146475 \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{\mathrm{CO}_{3}}=14.1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

EXAMPLE PROBLEM:

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?
1 - Convert 2545 g chlorine gas to moles chlorine gas. Use FORMULA WEIGHT
2 - Convert moles chlorine gas to moles sodium metal. Use BALANCED CHEMICAL EQUATION
3 - Convert moles sodium metal to grams. Use FORMULA WEIGHT.
(1) $\mathrm{Cl}_{2}: \frac{2 \times 35.4 \mathrm{~s}}{70.90 \mathrm{~g} \mathrm{Ci}}=\mathrm{mul} \mathrm{Cl}_{2}$
(2) $2 \operatorname{molNa}=\operatorname{mol} \mathrm{Cl}_{2}$
(3) $\mathrm{Na}: 22.99 \mathrm{ga}=$ mol Na

$$
2545 \mathrm{gCt} \times \frac{\operatorname{mot} \mathrm{CT}_{2}}{70.90 \mathrm{gCt}} \times \frac{2 \operatorname{raniNa}}{\frac{\operatorname{mot}}{2}}(2) \times \frac{22.99 \mathrm{~g} \mathrm{a}}{\operatorname{motNa}}=1650 . \mathrm{g} \mathrm{Na}
$$

