${ }^{136}$ - Temperature:

- a measure of the average kinetic energy of the molecules of the gas

$$
E K=\frac{1}{2} m_{\hat{\sim}}^{V^{2}}
$$

- The faster the gas molecules move, the higher the temperature!
- The temperature scales used when working with gases are ABSOLUTE scales.
- ABSOLUTE: scales which have no values less than zero.
- KELVIN: metric absolute temperature scale.

Quick comparison of temperature scales!

$$
K=273.15+{ }^{\circ} \mathrm{C}
$$

212	100	373	
77	25	298	
32	0	273	
-460	-273	0	
Of	${ }^{\circ} \mathrm{C}$	K	

Water boils
Room temperature

Water freezes

Absolute zero!

THE KINETIC PICTURE OF GASES

(1) Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

(2)

Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.

Attractive and repulsive forces between gas
(3) molecules are so small that they can be neglected except in a collision.

- Each gas molecule behaves independently of the others.
(4) Collisions between gas molecules and each other or the walls are ELASTIC.
(5) The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2} \text { True at constant temperature at constant temperature }
\end{aligned}
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1 mol gus molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{array}{ll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text { isince } P_{1}=P_{2}(\text { constant } P), \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
V_{1}=3 . S \mathrm{~L} & V_{2}=? \mathrm{~L} \\
T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~W} ; T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K} \\
\frac{3.5 L}{300.2 \mathrm{~K}}=\frac{V_{2}}{268.2 \mathrm{~K} ;} V_{2}=3.1 \mathrm{~L} \text { in freezer }
\end{array}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C , what is the pressure of the gas in the piston?

$$
\begin{array}{rlrl}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad P_{1}=1.00 \mathrm{~atm} & V_{1}=2.25 \mathrm{~L} & P_{2}=? \\
T_{1}=25.0^{\circ} \mathrm{C}=298.2 \mathrm{k} & T_{2}=31.00 \mathrm{~L} \\
\frac{(1.06 \mathrm{~atm})(2.25 \mathrm{~L})}{(298.2 \mathrm{k})}=\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{k})} ; & P_{2}=2.304 .2 \mathrm{k}
\end{array}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\frac{\uparrow \mathrm{O}_{2}}{\mathrm{O}_{2}: 32.0 \mathrm{~g} \mathrm{O}_{2}=\mathrm{mul} \mathrm{O}_{2}}
$$

* Volume of a 10'x10'x8'

Use the ideal gas equation to find MOLES of gas, then convert to MASS using the formula weight.

$$
\begin{aligned}
& P V=n R T \\
& \frac{P V}{R T}=n \left\lvert\, \begin{array}{ll}
P=1.18 \mathrm{~atm} & R=0.08206 \frac{\mathrm{cog}, \mathrm{~m}}{\mathrm{~mol} \cdot \mathrm{k}} \\
V=22650 \mathrm{~L} & T=25.00 \mathrm{C}=298.2 \mathrm{k}
\end{array}\right. \\
& \frac{(1.18 \mathrm{arm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Lasm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{k})}=n_{O_{2}}=1092.222357 \mathrm{mul} \mathrm{O}_{2}
\end{aligned}
$$

Now, convert moles oxygen gas to mass oxygen gas using the formula weight...

$$
1092.222357 \mathrm{mul} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{moloz}_{2}}=35 \mathrm{OOO}_{2} \mathrm{O}_{2} \sim 77 \mathrm{lb}
$$

