More on MOLARITY

To prepare a solution of a given molarity, you generally have two options:

- Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
- Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)

$$M_1 V_1 = M_2 V_2$$
 Since the number of moles of solute stays before after the same, this equality must be true!

$$M_1 V_1 = M_2 V_2$$
 ... the "DILUTION EQUATION"

M, = molarity of concentrated solution

 $\sqrt{}$ volume of concentrated solution

M 2 = molarity of dilute solution

V2 = volume of dilute solution (total valume, nut volume at added solvent!)

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!

Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150. mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$M_1 V_1 = M_2 V_2$$
 $M_1 = 0.500 M$ $M_2 = 0.333 M$ $V_1 = ?$ $V_2 = 150.mL$ $V_2 = 150.mL$ $V_1 = 99.9 mL of 0.500 M$ $N_{42} SO_4$

Take 99.9 mL of 0.500 M sodium sulfate solution, and add enough water to make 150, mL of diluted solution.

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

2 All(s) +3 Br₂(l)
$$\rightarrow$$
 2 Al Br₃(s)

Toefficients are in terms of atoms and molecules!

2 atoms Al = 3 molecules Br₂ = 2 formula units Al Br₃

2 mol Al = 3 mol Br₂ = 2 mol Al Br₃

- To do chemical calculations, we need to:
 - Relate the amount of substance we know (mass or volume) to a number of moles
 - Relate the moles of one substance to the moles of another using the equation
 - Convert the moles of the new substance to mass or volume as desired

$$2A(ls) + 3Br_2(l) \longrightarrow 2A(Br_3(s))$$

- * Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
 - Convert grams of bromine to moles: Need formula weight B_{12} : $\frac{2 \times 79.96}{159.80}$ $25.09 Br₂ \times \frac{mol Br₂}{159.80} = 0.15645 \text{ mol Br₂}$ $\frac{159.80}{159.80}$
 - Use the chemical equation to relate moles of bromine to moles of aluminum $2 \text{ mol} \ \text{A} = 3 \text{ mol} \ \text{BG}$

Convert moles aluminum to mass: Need formula weight A1126.78

$$26.98gA|= molA|$$
 $0.10430 molA| \times \frac{26.98gA|}{molA|} = 2.81gA|$

You can combine all three steps on one line if you like!

Things we can do:

If we have	and we need	Use
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR CONCETRATION (MOLARITY)
MOLES OF A	MOLES OF B	BALANCED CHEMICAL EQUATION

101 Example:

How many milliliters of 6.00M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$= 2H(1(aq) + Na2(O3(s) \rightarrow H2O(l) + (O2(g) + 2NaCl(aq))$$

- 1 Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
- 2 Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION
- 3 Convert moles HCI to volume solution. Use MOLARITY (6.00 M HCI)

$$\begin{array}{c|c}
\hline
 Na_{2}(0_{3} - Na; 2 \times 22.99 \\
 & (:1 \times 12.01) \\
 & 0: 3 \times 16.00 \\
\hline
 105.99 & Na_{2}(0_{3} = mo) Na_{2}(0_{3} \\
\hline
 25.0 & Na_{2}(0_{3} \times \frac{mol Na_{2}(0_{3}}{105.99 & Na_{2}(0_{3}} = 0.23567|3086 mo) Na_{2}(0_{3})
\end{array}$$

$$0.23567|3086 \text{ mol } Na_{2}(03 \times \frac{2 \text{ mol HC}|}{\text{mol } Na_{2}(03} = 0.47|7426|72 \text{ mol HC}|$$

102 Example:

How many milliliters of 6.00M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

- 1 Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
- 2 Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION
- 3 Convert moles HCI to volume solution. Use MOLARITY (6.00 M HCI)
- 3 6.00 mul HC1=L

The problem asks us for the answer in milliliters. No big problem ... we can just convert liters to mL...

25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

What is the molar concentration of the acetic acid?

- 1 Convert 37.3 mL of NaOH solution to moles NaOH. Use MOLARITY (0.150 M NaOH)
- 2 Convert moles NaOH to moles acetic acid. Use CHEMICAL EQUATION
- 3 Divide moles acetic acid and volume acetic acid solution to get molarity.

$$M = \frac{0.005595 \text{ mol H(2 H302}}{0.0250 \text{ L}} = 0.223 M H(2 H302)$$

Note: This problem is similar to the calculation procedure for Experiment 4C!