${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. User FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume. Use MOLARITY.

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}_{3}: 2 \times 22.99 \\
& \text { c: } 1 \times 12.0\} \\
& 0: \frac{3 \times 16.00}{105.99} \mathrm{gan}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(2) $2 \mathrm{molHCl}=\operatorname{mol~} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{an}_{2} \mathrm{Jo}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. User FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles MCI to volume. Use MOLARITY.
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L}
$$

We were asked to provide the volume in $\mathrm{mL} . .$. so we'll convert 0.0786 L to mL .
$m L=10^{-3 L}$

$$
0.0786 L \times \frac{m L}{10^{-3 L}}=\begin{aligned}
& 78.6 \mathrm{~mL} \mathrm{of} \\
& 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

103
25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the acetic acid?

$$
\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{~L} \text { Solution }}=25.0 \mathrm{~mL} \text { or } \mathrm{O}, 0250 \mathrm{~L}
$$

1 - Convert 37.3 mL of sodium hydroxide solution to ,moles. Use MOLARITY.
2 - Convert moles NaOH to moles acetic acid. Use CHEMICAL EQUATION
3 - Convert moles acetic acid to MOLARITY by dividing by the solution volume.
(1) $0.180 \mathrm{~mol} \mathrm{NaOH}=\mathrm{L} ; \mathrm{mL}=10^{-3} \mathrm{~L}(2) \mathrm{mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{HC} \mathrm{H}_{3} \mathrm{O}_{2}$

$$
M=\frac{\operatorname{mot} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{L \text { solution }}=\frac{0.005595 \mathrm{~mol}^{2} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{0.02502}=0.224 \mathrm{MHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

* Note for this week: This is the main calculation for Experiment 4C ...

104
$42.081 \mathrm{~g} / \mathrm{mol}$

$$
4 \mathrm{C}_{3}^{42.081} \mathrm{H}_{6}+6 \mathrm{~mol} \longrightarrow 4 \mathrm{CO}_{3}^{53.064} \mathrm{H}_{3}^{\mathrm{g} / \mathrm{Nal}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

propylene
acrylonitrile
Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.

1 - Convert mass propylene to moles propylene. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass acrylonitrile. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol}_{3} \mathrm{C}_{3} \mathrm{H}_{6} ; \mathrm{Kg}=10^{3} \mathrm{~g}$
(2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\operatorname{mol}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{aligned}
& =821000 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}(821 \mathrm{~kg})
\end{aligned}
$$

105

$$
\begin{aligned}
& 1 \mathrm{SI} .90 \mathrm{~g} / \mathrm{mol} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permangenate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 grams iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume. Use MOLARITY.
(1) $151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}$
(2) $10 \mathrm{~mol} \mathrm{FeSo}_{y}=2 \mathrm{~mol}_{\mathrm{Kl} \mathrm{m}}^{4}$
(3) $0.250 \mathrm{~mol} \mathrm{KM} \mathrm{KO}_{4}=\mathrm{L} ; \mathrm{mL}=10^{-3} \mathrm{~L}$
(1)
(2)

$$
\begin{align*}
& 3.3 \mathrm{~g} \mathrm{FeSO}_{4} \times \frac{\mathrm{mol} \mathrm{FeSO}_{4}}{151.9 \mathrm{~g} \mathrm{FeSO}_{4}} \times \frac{2 \mathrm{~mol} \mathrm{kmnO}_{4}}{10 \mathrm{~mol} \mathrm{FeSO}_{4}} \times \frac{\mathrm{L}}{0.250 \mathrm{~mol} \mathrm{KMnO}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}= \tag{3}\\
& =17.7 \mathrm{~mL} \mathrm{of} 0.250 \mathrm{M} \mathrm{KMndy}
\end{align*}
$$

