RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

$$
M_{\substack{\text { Atomic } \\ \text { muss }}} \mid 24,31 \mathrm{~g} \mathrm{mg}_{\mathrm{g}}=\frac{1 \mathrm{~mol}}{} \mathrm{Mg}_{\mathrm{g}} \mathrm{~m}_{\substack{\text { "mol" is the } \\ \text { abbreviation for } \\ \text { "mole" }}}
$$

Example: How many moles of atoms are there in 250. g of magnesium metal?

$$
\begin{aligned}
& 24.31 \mathrm{~g} \mathrm{Mg}=\mathrm{mol} \mathrm{Mg} \\
& 250 . \mathrm{g} \mathrm{~g} \times \frac{\mathrm{molg}}{24.31 \mathrm{~g} \mathrm{Ng}}=10.3 \mathrm{~mol} \mathrm{Mg}
\end{aligned}
$$

ATOMIC WEIGHT is a MEASURED number - in other words, it has significant figures. Usually we can find atomic weights with more significant figures if necessary.
${ }^{88}$
Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{aligned}
& \mathrm{Fe}: 55.85 \\
& 55.85 \mathrm{~g} \mathrm{Fe}=\mathrm{mol} \mathrm{Fe} \\
& 1.75 \mathrm{molFe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{\text { mot Fe }}=97.7 \mathrm{~g} \mathrm{Fe}
\end{aligned}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
H_{2} \mathrm{O}: \quad H: 2 \times 1.008 & =2.016 \\
0: 1 \times 16.00 & =\frac{16.00}{18.0161}
\end{aligned}
$$

FORMULA WEIGHT is the mass of one mole of either an element OR a compound.

$$
\begin{aligned}
& 18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\operatorname{mol} \mathrm{H}_{2} \mathrm{O} \quad \text { of either an elem e } \\
& 25.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H2O}}=1.39 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

90
Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

First, find the formula of ammonium carbonate!

$$
\frac{\mathrm{NH}_{4}^{+} \mathrm{CO}_{3}^{2-}}{\mathrm{NH}_{4}^{+}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

Then, find the formula weight of ammonium carbonate:

$$
\begin{aligned}
N & : 2 \times 14.01 \\
H & : 8 \times 1.008 \\
C & =1 \times 12.01 \\
0 & : \frac{3 \times 16.00}{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}
\end{aligned}
$$

Now, convert moles to mass:

$$
\left.3.6 \mathrm{~S}_{\mathrm{mol}}(\mathrm{NaH})_{2} \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\operatorname{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=3 \mathrm{~S}\right)_{\mathrm{g}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \mathrm{N}: 2 \times 14.01=28.02 \mathrm{~K} \\
& H: 4 \times 1.008=4,032 \longleftarrow \text { These numbers are the masses of each } \\
& 0: 3 \times 16.00=\frac{48.00}{80.052} \mathrm{gNH}_{4} \mathrm{NO}_{3}=\text { mol } \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \begin{array}{l}
\% N=\frac{28.02 \mathrm{~g} \mathrm{~N}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=35.00 \% \mathrm{~N} \\
\% \mathrm{H}=\frac{4.032 \mathrm{~g} \mathrm{H}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=5 . \begin{array}{l}
\text { All these } \\
\text { percentages } \\
\text { should sum } \\
\text { to 100\% } \\
\text { (within } \\
\text { roundoff error!) }
\end{array} \\
\% O=\frac{48.00 \mathrm{~g} 0}{80.052 \mathrm{~g} \text { total }} \times 100 \%=59.96 \% 0
\end{array}
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?
- unit: MOLARITY (M): moles of dissolved substance per LITER of solution ц dissolved substance

$$
\begin{gathered}
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOLUTON }} \\
6.0 \mathrm{M} \mathrm{HCl} \text { solution: } \frac{6,0 \mathrm{mul} \mathrm{HCl}}{\mathrm{~L}}
\end{gathered}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have? $\quad 6.0 \mathrm{~mol} H C \mid=L$

$$
\left.0.250 L \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{mul} \right\rvert\,=1 \mathrm{Cl}
$$

*See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162 -9th edition) (p 156-164-10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
0.0555 \mathrm{~mol} \mathrm{HCl}=L
$$

This is much too large of a

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{11.8 \mathrm{~L}}{11800 \mathrm{~mL}}
$$ volume for typical lab-scale work. Use a more concentrated solutio!

What if we used 6.00 M HCl ?

$$
6,00 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 \mathrm{~mL}}
$$

This volume is easy to measure with our lab glassware!

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

> volumetric flask

Given that we need 0.500 M sodium sulfate (concentraiton) and we need 500 mL (volume), we can calculate the MOLES OF SODIUM SULFATE REQUIRED. Then, convert the moles sodium sulfate to MASS using the formula weight.
$0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{L}\left|\mathrm{mL}=10^{-3} \mathrm{~L}\right| 142.0 \mathrm{~S}_{\mathrm{g}}^{\mathrm{G}} \mathrm{H} \mathrm{SO}_{4}=\mathrm{mul} \mathrm{Na}_{2} \mathrm{SO}_{4}$
 500 mL volumetric flask, and add water to the mark.

