

PREDICTING CHARGES

- how do you figure out the charge that an element might take when it becomes an ion?

- for many main group elements, you can predict the charge using the periodic table!

IA																VIIIA	
Н	IIA	1									т	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIIB	IVB	VB	VIB	VIIB	, <u> </u>	VIIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ba	¥ La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	s go	here)

Elements in group VIIIA - the "noble gases" - do not form ions!

Many OTHER main-group elements form either anions or cations that have the same overall number of electrons as the NEAREST (in terms of atomic number) noble gas!

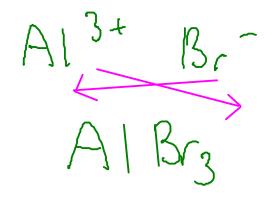
IA	1	PREDICTING CHARGE															VIIIA
Н	IIA	You can reliably determine the charge using our TVA VA VA VIA VIA															He
Li	Be	method for Groups IA, IIA, IIIB, Aluminum, and														۱٥ Ne	
Na	Mg	IIIB	IVB	VB	VIB	VIIB	· \	VIIIB		IB	→ IIB	AI	Si	Ρ	S	CI	γ α Ar
К	Са	Sc	Ti	V	Cr	Mn		Со		Cu	Zn	Ga	Ge	As	Se	Br	36 Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ba	Ļa *	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	s go	here)

Aluminum (AI): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al 37

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br

Strontium (Sr): At atomic number 38, strontium is two electrons away from krypton. Prediction: Strontium will lose two electrons to form the cation Sr²⁺

	` —-I	EXAMPLES															VIIIA
Н	IIA	Ju										IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	\bigcirc	F	Ne
No	Mg	IIIB	IVB	VB	VIB	VIIB	, \	VIIIB		IB	IIB	ÂÌ	Si	Ρ	S	CI	Ar
K) Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
R	S Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
С	s Ba	Ļå	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here)


Find the formulas of:

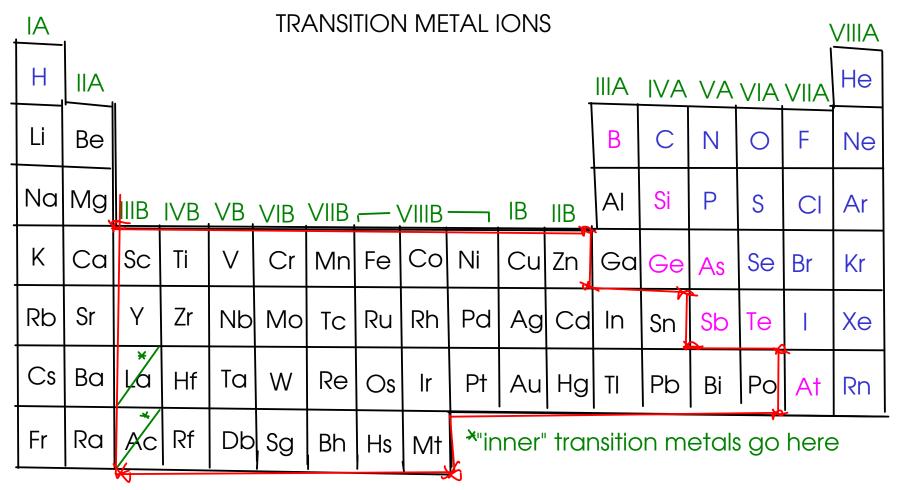
(1) an ionic compound containing AI and Br(2) an ionic compound containing Mg and O(3) an ionic compound containing S and K

41'5+ Br M 2+ M2-

* an ionic compound containing AI and Br

Find the formula of:

* an ionic compound containing Mg and O


Mg²r 02-

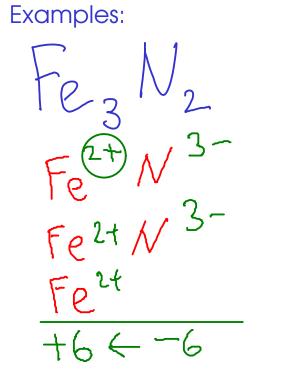
Find the formula of:

* an ionic compound containing S and K

 \leq

Reminder: In an ionic formula, we write . CATIONS (+ charge) before ANIONS (- charge)

The transition metals always form CATIONS!


However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

Example: Iron (Fe) forms two cations, depending on the situation: Fe^{2t} or Fe

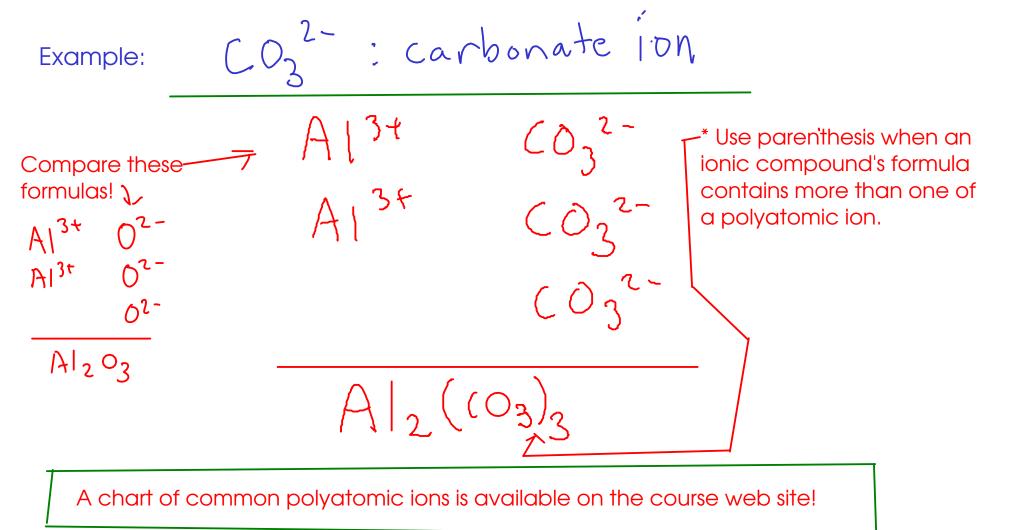
TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told

- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

* The form of iron ion in this compound (with a +2 charge) is called "iron(II)" ... pronounced "iron two". The compound is called "iron(II) nitride".

$$\frac{Fe}{Fe^{3+}N^{3-}}$$


$$\frac{Fe^{3+}N^{3-}}{+3 \leftarrow -3}$$

* The form of iron ion in this compound (with a +3 charge) is called "iron(III)" ... pronounced "iron three". The compound is called "iron(III) nitride".

POLYATOMIC IONS

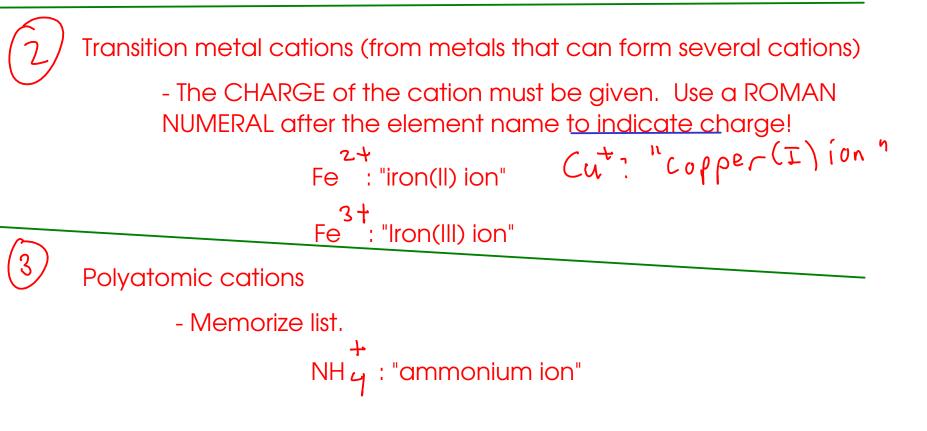
- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS

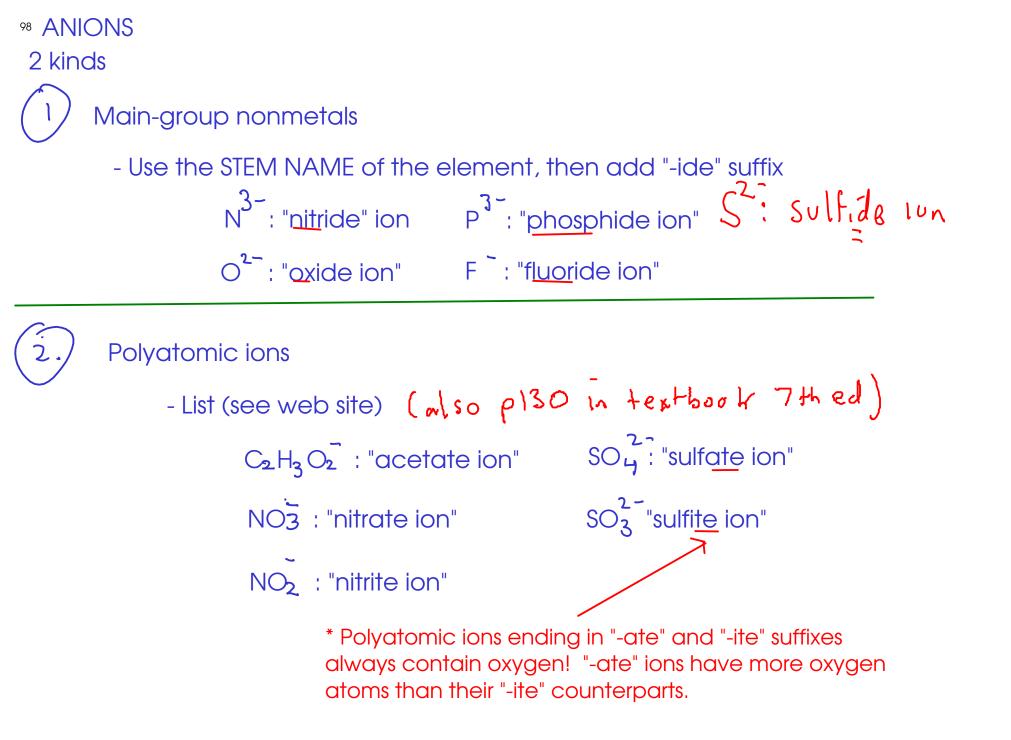
- Polyatomic ions form ionic compounds in the same way that single-element ions do.

(p130 - 7th edition)

97

NAMES OF IONS


- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

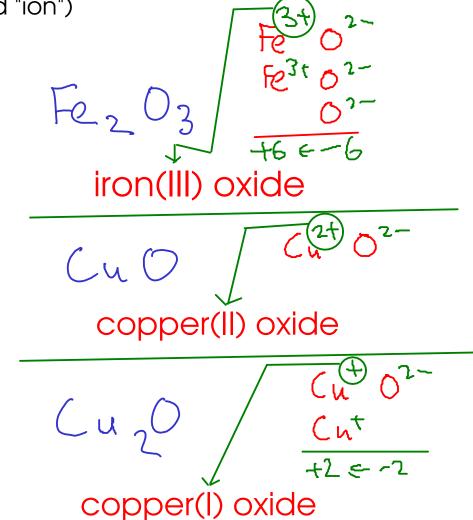

3 kinds:

1) Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Mg²⁺: "magnesium ion"

NAMING IONIC COMPOUNDS


- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second (drop the word "ion") Examples:

My (OH)2 magnesium hydroxide

 N_{α_2} S sodium sulfide

BeBrz

beryllium bromide

Remember to include the Roman numeral for CHARGE in the name of transition metal compounds!