RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")

- Need CONVERSION FACTORS - where do they come from?

- We use ATOMIC WEIGHT as a conversion factor.

$$M_{g} : 24.31 | 24.31 g M_{g} = 1 \mod M_{g}$$

$$T_{Atomic} = 1 \mod M_{g}$$

$$T_{mass} = 1 \mod M_{g}$$

$$T_{mol} = 1 \mod M_{g}$$

Example: How many moles of atoms are there in 250. g of magnesium metal? 24,3 g Mg = mol Mg 250-g Mg $\chi \frac{mol Mg}{24,3 | g Mg} = 10.3 mol Mg$

> ATOMIC WEIGHT is a MEASURED number - in other words, it has significant figures. Usually we can find atomic weights with more significant figures if necessary.

Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

• Fe: SS.8S 55.85g Fe = mol Fe 1.75 mot Fe x $\frac{55.85g}{mot}$ Fe = 97.7g Fe WHAT ABOUT COMPOUNDS? FORMULA WEIGHT

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$H_{2}0: \qquad H:2 \times 1.008 = 2.016$$

$$0:1 \times 16.00 = \frac{16.00}{16.016} = FORMULA WEIGHT of water$$

$$18.016 g H_{2}0 = mo1 H_{2}0$$

$$2S.0 g H_{2}0 \times \frac{mo1 H_{2}0}{18.016 g H_{2}0} = \frac{1.39 mo1 H_{2}0}{1.39 mo1 H_{2}0}$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

First, find out the correct FORMULA of ammonium carbonate...

$$\frac{NH_{4}^{+}}{(NH_{4})_{2}(0_{3})}$$

Then, find the FORMULA WEIGHT

$$N: 2 \times |4.0|$$

 $H: 8 \times 1.008$
 $C: 1 \times |2.0|$
 $0: 3 \times 16.00$
 $\overline{96.094g} (N44)_2(0_3 = m0) (N44y)_2(0_2)$

Finally, do the calculation...

$$3.65 \text{ mol} (N4y)_2 (O_3 \chi \frac{96.094 \text{ g} (N4y)_2 (O_3}{\text{mol} (N4y)_2 (O_3} = 351 \text{ g} (N4y)_2 (O_3)$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage composition of ammonium nitrate.

- ⁹² So far, we have
 - looked at how to determine the composition by mass of a compound from a formula
 - converted from MASS to MOLES (related to the number of atoms/molecules)
 - converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?

- How do we deal with finding the moles of a desired chemical when it's in solution?

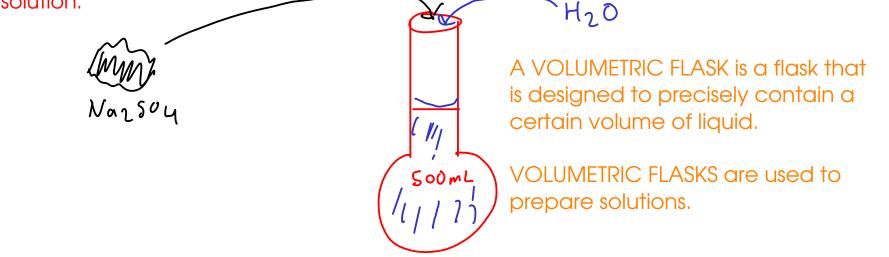
- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

√ dissolved substance M - molarity - moles of SOLUTE L SOLUTION 6,0 M HCI solution: 6,0 mol HCI If you have 0.250 L (250 mL) of 6.0 M HCI, how many moles of HCI do you have? 6.0 mul HCI=L $O.2SOL \times \frac{6.0 \text{ mol HCl}}{1} = 1.5 \text{ mol HCl}$

★ See SECTIONS 4.7 - 4.10 for more information about MOLARITY and solution calculations (p 154 - 162 - 9th edition) (p 156-164 - 10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

0.0555 mol HCl = L


$$0.657 \text{ mol} \text{HCl} \times \frac{L}{0.0555 \text{ mol} \text{HCl}} = \boxed{11.8L}$$

 11800 ml
This volume is too large for lab-scale work. We should use a more DILUTE solution!

What if we used 6.00 M HCl? 6.00 mul HCl = L

O.657 md)
$$HC| \times \frac{L}{6.00 \text{ mul } HC|} = \frac{0.10 \text{ L}}{10 \text{ m}}$$

This volume is easy to measure with our normal glassware!

Example: How would we prepare 500. mL of 0.500 M sodium sulfate in water?

 $V_{a_2} S_{a_4}$: 142.05 g/mol Dissolve the appropriate amount of sodium sulfate into enough water to make 500. mL of solution.

volumetric flask

We know that we need 500 mL of solution. We ALSO know that the solution must be 0.500 M sodium sulfate. First, find the MOLES sodium sulfate to put in the flask, then convert moles to MASS sodium sulfate.

$$SOO.mK \times \frac{10^{-3}K}{mK} \times \frac{0.500 \text{ mol } Marson \times 2000 \text{ mol } Marson \times 20000 \text{$$

97.20

To make the solution, weigh out 35.5 grams sodium sulfate, put into a 500 mL volumetric flask, and add water to the mark.