
DETERMINING IONIC FORMULAS

^{*} Be careful with HYDROXIDE, CYANIDE, and HYPOCHLORITE ions. Try to avoid forgetting the parenthesis when you have more than one of these ions!

HYDRATES

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

water molecules per formula unit of compound

CuSou SH20

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated

copper (11) sulfate pentahydrate

"copper(II)"?

MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release $\overrightarrow{\mathsf{H}}^\mathsf{T}$ ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

- contain hydrogen and one other element

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT

- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

SECOND ELEMENT

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES!
THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

Examples:

boron trifluoride (1207

dichlorine heptaoxide

carbon monoxide

carbon dioxide

*Note: metalloids like boron behave chemically like nonmetals do.

carbon tetrachloride

dihydrogen monoxide

dinitrogen tetrafluoride

M_α (\ 2 : MAGNESIUM CHLORIDE ... not magnesium dichloride. Why not? This one is IONIC. We can tell because its first element is a METAL, and METAL/NONMETAL combinations are usually IONIC.

ACIDS

- named after the element (other than hydrogen) they contain
- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

HF: hydrofluoric acid* dissolves glass!

HCI: hydrochloric acid

HBC: hydrobromic acid

HT: hydroiodic acid

- (i) OXYACIDS
 - Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS
 - These acids are not true ionic compounds, but they interact with water to PRODUCE ions!
 - named based on the polyatomic ion they contain, with an ending change:
 - 1) ions ending in -ATE form acids ending in -IC
 - (1)- ions ending in -ITE form acids ending in -OUS

SulfATE H_2 F_0 H_3 F_0 H_2 F_0 H_2 F_0 H_3 H_4 H_4 H_5 H_5 H_6 H_8 $H_$

acetic acid

based on ACETATE ion $H^+ \quad \begin{array}{c} C_2 & H_3 & O_2 \end{array}$

HC2H3O2

nitrous acid

based on NITRITE

NO2

So, HNO2

carbonic acid

based on CARBONATE

The number of hydrogen atoms at the beginning of the formula equals the charge of the anion the acid is based on!