We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.
Example

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "k, lo." means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \begin{array}{l}
k g=10^{3} \mathrm{~g} \\
\frac{k m=10^{3} \mathrm{~m}}{k s}=10^{3} \mathrm{~s} \\
k L=10^{3} L
\end{array} \\
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

Convert 15.75 m to © $\mathrm{cm} \quad c \mathrm{~m}=10^{-2} \mathrm{~m}$

$$
15.75 \mathrm{~m} \times \frac{\mathrm{cm}}{10^{-2} \mathrm{~m}}=1575 \mathrm{~cm}
$$

* Similar to... If $X=2$, then

$$
\frac{x}{2}=1
$$

15.7S/[EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!
Convert 0.01893 kg to g $\quad \mathrm{kg}=10^{3} \mathrm{~g}$
DRAG AND DROP
- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTTOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to $\mathrm{kg} \quad m g=10^{-3} \mathrm{~g} \quad \mathrm{~K} g=10^{3} \mathrm{~g}$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{~kg}
$$

Convert $0.147 \mathrm{~cm}^{2}$ to m^{2}

$$
C m=10^{-2} m \begin{aligned}
& \text { <- Don't use squared } \\
& \text { or cubed units when } \\
& \text { making a factor! }
\end{aligned}
$$

$$
0.147 \mathrm{~cm}^{2} \times \frac{10^{-2} m}{C m} \times \frac{10^{-2} m}{C m}=\frac{1.47 \times 10^{-5} \mathrm{~m}^{2}}{\left.(0.000014) \mathrm{m}^{2}\right)}
$$

For squared and cubed units, use each conversion factor two (for squared) or three (for cubed) times. Think of squared and cubed units this way:

$$
\begin{aligned}
& C m^{2}=c m \times C m \\
& C m^{3}=c m \times c m \times c m
\end{aligned}
$$

... and it should make sense.
8.45 kg to $\mathrm{mg} \quad K \mathrm{~g}=10^{3} \mathrm{~g} \quad \mu \mathrm{~g}=10^{-6} \mathrm{~g}$

$$
8.45 \mathrm{k} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}} \times \frac{\mu \mathrm{g}}{10^{-6} \mathrm{~g}}=\frac{8.45 \times 10^{4} \mathrm{wg}}{(8450000000 \mathrm{ng})}
$$

88100 kHz to MHz
$H_{z}=S^{-1}$ (frequency)

$$
\begin{array}{r}
\text { KHz }=10^{3} \mathrm{~Hz} \quad M \mathrm{~Hz}=10^{6} \mathrm{~Hz} \\
88100 \mathrm{kHz} \times \frac{10^{3} \mathrm{~Hz}}{K \mathrm{~Hz}_{z}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
\end{array}
$$

Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=\mathrm{m} \quad \mathrm{~cm}=10^{-2} \mathrm{~m} \\
& 38.47 \text { 泾 } \times \frac{2.54 \mathrm{~cm}}{1 / \mathrm{K}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{c} / \mathrm{m}}=0.9771 \mathrm{~m}
\end{aligned}
$$

Convert 12.48 km to in

$$
\begin{aligned}
2.54 \mathrm{~cm}=\text { in } \quad \mathrm{cm} & =10^{-2} \mathrm{~m} \\
\mathrm{~km} & =10^{3} \mathrm{~m}
\end{aligned}
$$

$$
12.48 \mathrm{k} \mathrm{~m} \times \frac{10^{3} \mathrm{~m}}{\mathrm{k} \mathrm{~m}} \times \frac{\mathrm{cm}}{10^{-2} \mathrm{~m}} \times \frac{\mathrm{in}}{2.54 \mathrm{~cm}}=491300 \mathrm{in}
$$

Accuracy and Precision

- two related concepts that you must understand when working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

