11 ...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.

$$
\text { volume }=25.0 \mathrm{~mL}
$$

3) Put object into cylinder, record new volume
volume $=26.6 \mathrm{~mL}$
4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-\quad 25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object $/$ volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \mathrm{~g}}{1.6 \mathrm{~mL}} \\
& =6.1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.
Example

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "kilo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \left.\begin{aligned}
\frac{k m}{k g} & =10^{3} \mathrm{~m} \\
\frac{K L}{K L} & =10^{3} \mathrm{~g} \\
K s & =10^{3} \mathrm{~s}
\end{aligned} \right\rvert\, \begin{array}{l}
\text { Just apply the } \\
\text { prefix to the } \\
\text { base unit! }
\end{array}
\end{aligned}
$$

How do we actually USE a conversion factor?

*similar to... If $X=2$, then $\frac{x}{2}=1$
15.7S/EET-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!
Convert 0.01893 kg to g $\mathrm{Kg}=10^{3} \mathrm{~g}$
DRAG AND DROP
- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the вотом.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to kg

$$
m g=10 \frac{-3}{g} \quad k g=10 \frac{3}{g}
$$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}^{-3}}{\mathrm{~m} / \mathrm{g}} \times \frac{\mathrm{kg}}{10^{\frac{3}{g}}}=0.0145 \mathrm{~kg}
$$

Convert $0.147 \mathrm{~cm}^{2}$ to m^{2}

$$
C m=10^{-2} m
$$

<- don't use squared and cubed units in your factors!

$$
0.147 \mathrm{cin}^{2} \times \frac{10^{-2} \mathrm{~m}}{\operatorname{cin}} \times \frac{10^{-2} \mathrm{~m}}{6 \text { 所 }}=\frac{1.47 \times 10^{-5} \mathrm{~m}^{2}}{\left(0.0000147 \mathrm{~m}^{2}\right)}
$$

For squared and cubed units, remember that you must use each factor two (for squared) or three (for cubed) times. If you remember that ...

$$
\begin{aligned}
& C m^{2}=C m \times c m \\
& C m^{3}=\operatorname{cm} \times \operatorname{cm} \times \operatorname{cm}
\end{aligned}
$$

... it should make sense!
8.45 kg to $\mu \mathrm{g} \quad k_{g}=10^{3} \mathrm{~g} \quad \mu g=10^{-6} \mathrm{~g}$

$$
8.45 \mathrm{w} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}} \times \frac{\mu \mathrm{g}}{10^{-6} \mathrm{~g}}=\frac{8.45 \times 10^{9} \mathrm{mg}}{(8450000000 \mathrm{mg})}
$$

88100 kHz to MHz	
$K \mathrm{~Hz}$	$=10^{3} \mathrm{~Hz} \quad \mathrm{Hzz}=10^{6} / \mathrm{zz}=\mathrm{S}^{-1}$ (Frequency)

$$
88100 \mathrm{kHz} \times \frac{10^{3} \mathrm{~Hz}}{1 \times \mathrm{Hz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
$$

Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=\text { in } \mathrm{cm}=10^{-2} \mathrm{~m} \\
& 38.47 \text { ins } \times \frac{2.54 \mathrm{~cm}}{\text { ix r }} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{aligned}
$$

Convert 12.48 km to in 2.54 cm = in $\quad \mathrm{cm}=10^{-2} \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{km}=10^{3} \mathrm{~m} \\
& 12.48 \mathrm{~km} \times \frac{10^{3} \mathrm{~m}}{\mathrm{~km}^{2}} \times \frac{\mathrm{cm}}{10^{-2} \mathrm{mh}} \times \frac{\mathrm{in}}{2.54 \mathrm{gm}}=491300 \mathrm{in}
\end{aligned}
$$

