Measuring density
... of a liquid

1) Measure mass of empty cylinder
\qquad
2) Fill cylinder and measure volume of liquid

Volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\operatorname{mass}=130.55 \mathrm{~g}
$$

5) Density = mass liquid / volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

14 ...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.
volume $=25.0 \mathrm{~mL}$
3) Put object into cylinder, record new volume
volume $=26.6 \mathrm{~mL}$
4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object $/$ volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \mathrm{~g}}{1.6 \mathrm{~mL}} \\
& =6.1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method.... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$
\begin{aligned}
& \text { Example } \\
& 12 \mathrm{in}=1 \mathrm{ft}
\end{aligned}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\left.\begin{aligned}
& \text { For example, "k ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{k m}{}=10^{3} \mathrm{~m} \\
& \frac{K g}{}=10^{3} \mathrm{~g} \\
& K s=10^{3} \mathrm{~s} \\
& K L=10^{3} \mathrm{~L}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

Convert 15.75 m to cm
Put what you want to cancel on the bottom, then ...
put what it equals on the top!

Convert 0.01893 kg to g

$$
K g=10^{3} \mathrm{~g}
$$

$$
0.01893 \mathrm{k} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}}=18.93 \mathrm{~g}
$$

Convert 14500 mg to kg

$$
m g=10^{-3} g \quad k g=10^{3} g
$$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.014 \mathrm{~s} \mathrm{rg}
$$

Convert 0.147 mm to $\mu \mathrm{m}$ (mc-also means "micro)

$$
\wedge_{\text {micro- }} \quad m m=10^{-3} \mathrm{~m} \quad \mu m=10^{-6} \mathrm{~m}
$$

$$
0.147 \mathrm{mms} \times \frac{10^{-3} \mathrm{~m}}{\mathrm{~m}} \times \frac{\mu \mathrm{m}}{10^{-6} \mathrm{~m}}=147 \mathrm{\mu m}
$$

${ }^{19}$ Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{gathered}
2.54 \mathrm{~cm}=\text { in } \quad \mathrm{cm}=10^{-2} \mathrm{~m} \\
38.47 \text { in } \times \frac{2.54 \mathrm{csh}}{\text { in }} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{gathered}
$$

${ }^{20}$ Even if you're unfamiliar with the metric units involved in a problem, you can still do conversions easily.

88100 kHz to MHz

$$
H_{2}=1 / 5\left(f_{\text {frequency }}\right)
$$

$$
K H_{z}=10^{3} \mathrm{~Hz} \quad \mathrm{MH}_{z}=10^{6} \mathrm{~Hz}
$$

$$
88100 \mathrm{Ly} \mathrm{H}^{\prime} \mathrm{F} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{KHz}} \times \frac{\mathrm{HHz}_{z}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
$$

$0.004184 \mathrm{kJtoj} \quad k J=10^{3} \mathrm{~J} \quad J=$ Joule (energy)

$$
0.004184 \mathrm{LJJ} \times \frac{10^{3} \mathrm{~J}}{\mathrm{~kJ}}=4.184 \mathrm{~J}
$$

A sample application of dimensional analysis: Drug calculations in the healthcare field...

Example: A patient is ordered 40 mg of codeine phosphate by subcutaneous injection. 50 mg in 1 mL liquid is available. How much of this liquid should be adminstered?

This is a CONVERSION FACTOR. Many statements with "in" or "per" connecting two numbers can be used as conversion factors!
$50 \mathrm{mg} \operatorname{drug}=1 \mathrm{~mL}$

$$
40 \mathrm{mg} / \operatorname{drug} \times \frac{1 \mathrm{~mL}}{50 \mathrm{~m} / \mathrm{g} \operatorname{drug}}=0.8 \mathrm{~mL}
$$

