
For the three red circles to be farthest apart, they spread out so that each is 120 degrees from the others!

TRIGONAL PLANAR MOLECULES

These hydrogen atoms might appear at first glance to be 90 degrees apart, but remember that molecules exist in THREE DIMENSIONS, not two!

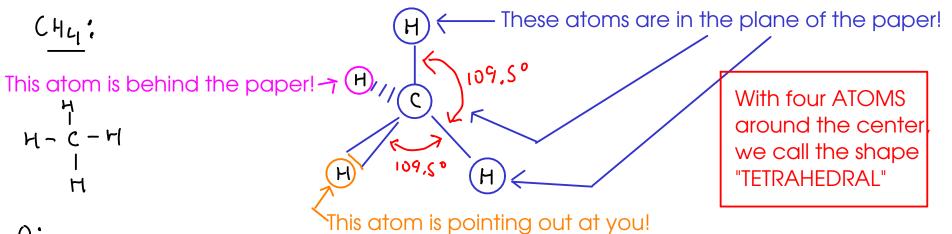
Each hydrogen atom is actually 109.5 degrees apart, forming a TETRAHEDRON.

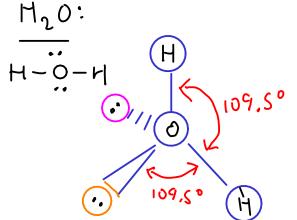
To see the tetrahedron in three dimensions WITHOUT buying a molecular model kit, just take four balloons, blow them up, and then tie them together. The knot will be the central atom, and the balloons will line themselves up to be 109.5 degrees apart.

VSEPR shapes

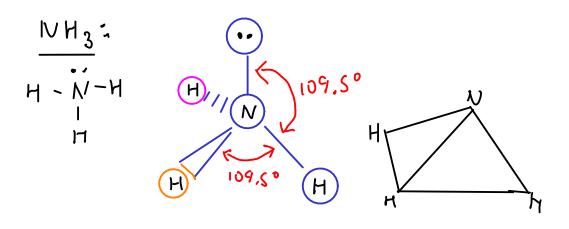
★ "Groups" can be either BONDS or LONE PAIRS!

VSEPR shapes:

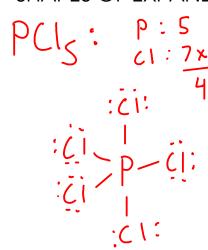

<u> </u>						
Groups around central atom	Shape	Bond angle(s) in degrees				
2	linear	180				
3	trigonal planar	120				
4	tetrahedral / pyramidal / bent	109.5				
5	trigonal bipyramidal (and derivatives)	90 and 120				
6	octahedral (and derivatives)	90				


£000

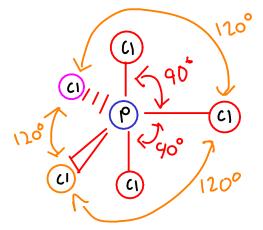
-Sand 6 violate "octet rule"


⁵More on "4 things around a central atom":

- A compound that obeys the octet rule can have a maximum of four groups around its central atom. But we describe the molecular shape based on how ATOMS are arrnaged around the center. What if some of those groups aren't atoms, but pairs of UNSHARED electrons?



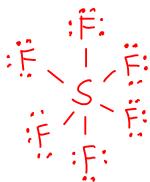
With two ATOMS and two LONE PAIRS, we call the shape "BENT"



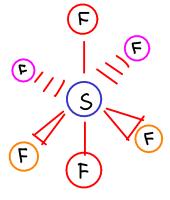
With three ATOMS and one LONE PAIR, we call the shape "PYRAMIDAL"

6 SHAPES OF EXPANDED VALENCE MOLECULES

There are five atoms bonded to the central phosphorus atom, and they will attempt to get as far apart as possible from one another!


The top and bottom atoms are 90 degrees apart from the atoms around the center.

The atoms around the center are 120 degrees apart from each other.



There are acually two DIFFERENT bond angles in this structure. It's called TRIGONAL BIPYRAMIDAL.

There are several derivatives of the trigonal bipyramidal shape (like the tetrahedral shape) - depending on how many things around the central atom are atoms!

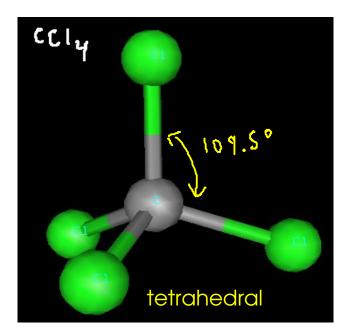
There are six atoms bonded to the central sulfur atom, and they will attempt to get as far apart as possible from one another!

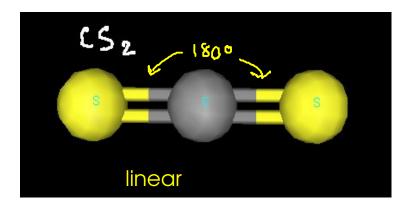
All bond angles in this arrangement are 90 degrees!

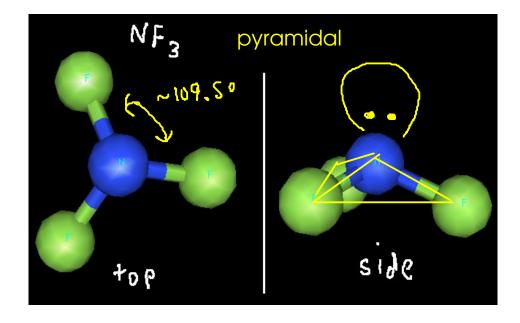
This shape is called OCTAHEDRAL, since it has eight sides.

Like the tetrahedral and trigonal bipyramidal arrangements, there are several derivatives of the octahedron - depending on how many of the six things around the center are atoms!

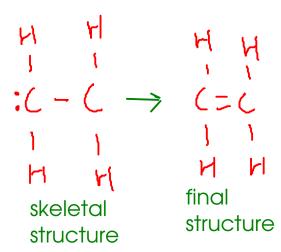
Examples:


xamples:
$$CCIY$$
 $C: IXY$
 $CI: YX7$
 $32e^{-}$
 $CI: YX7$

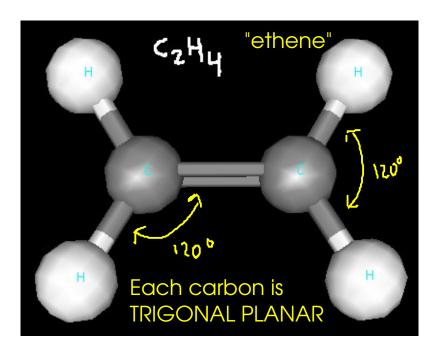

Shape? The central atom is surrounded by four chlorine atoms (and no lone pairs), so this is a TETRAHEDRAL molecule.

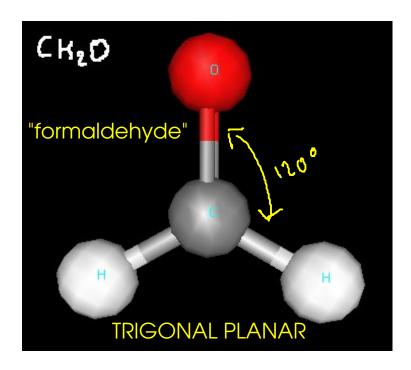

$$\begin{array}{c} (.52) \\ (.1) \\ ($$

Shape? Two atoms bonded to the central carbon atom (and no lone pairs) give this molecule a LINEAR shape.


Shape? This molecule has four groups around the central atom, but only three of them are atoms (one lone pair). So, this molecule is PYRAMIDAL (with the same bond angles as tetrahedral - about 109.5 degrees)

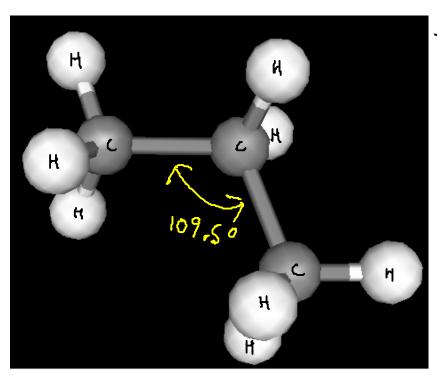
Structure tip: Multiple carbon atoms mean multiple "central atoms"




Shape? This molecule has TWO "central" carbon atoms, so we'll just describe the shape of the molecule around each one.

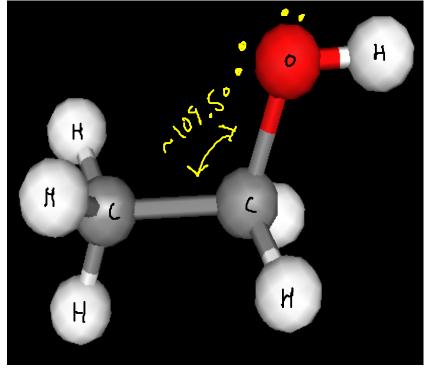
Each carbon has THREE other atoms attached to it and NO lone pairs, so the shape of the molecule around each carbon is TRIGONAL PLANAR.

$$H_2CO$$
 $H:2+1$
 $C:1+4$
 $O:1+6$
 $I2e^-$ skeletal final structure structure


Shape? Three groups around the central carbon atom. All three are atoms, so this molecule is TRIGONAL PLANAR. It doesn't matter that one atom is oxygen and the other two are hydrogen atoms when you're describing the shape.

VSEPR and large molecules

- Large molecules have more than one "center" atom
- Describe the molecule by describing the shape around each "center".



← C3 H8

All bond angles in the propane molecule are 109.5 degrees

 $CH_3CH_2OH \longrightarrow$

Like propane, the bond angles in ethanol are also close to 109.5 degrees.

- ¹⁴ POLARITY and shape:
 - A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

POLARITY influences several easily observable properties.

- Melting point. (Polar substances have higher melting points than nonpolar substances of similar molecular weight.)
- Boiling point. (Polar substances have higher boiling points than nonpolar substances of similar molecular weight.)
- Solubility. (Polar substances tend to dissolve in other polar substances, while being insoluble in nonpolar substances. Nonpolar substances dissove other nonpolar substances, and generally have poor solubility in polar solvents.)
- Polar molecules contain POLAR BONDS arranged in such a way that they do not cancel each other out.
 - ... but how can we tell whether or not a bond will be POLAR? Use experimental data on ELECTRONEGATIVITY!

ELECTRONEGATIVITY:

- -A measure of how closely to itself an atom will hold shared electrons
- A bond with little or no electronegativity difference between atoms will be NONPOLAR

ELECTRONEGATIVITY TRENDS

- You may look up elecronegativity data in tables, but it helps to know trends!

INCREASING
ELECTRO-

	ΙΛ	11. 4																NF(G	ΑII
_	IA ——	IIA	ı									7	<u>IIIA</u>	IVA	VA	VIA	VIIA	_ /	
2	Li	Ве											В	С	Ν	0	F		
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB	<u> </u>	√IIIB_		IB	IIB	Al	Si	Р	S	C		
4	K	Ca		Ti	V	Cr					Cu	Zn	Ga	Ge	As	Se	Br		
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1		
6	Cs	Ва	ľa	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At		
7	Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	nner"	trar	nsitio	n m	etals	go	here	.	
	N	ote	S 1			•	•	•	•	1									

- 1 FLUORINE is the most electronegative element, while FRANCIUM is the least!
- All the METALS have low electronegativity, and metal/nonmetal combinations form IONIC bonds
- 3 HYDROGEN is similar in electronegativity to CARBON, so C-H bonds are considered NONPOLAR

Examples:

C: 1x 4 F: 4x7 F:

E: 1x7

14e-

Polar molecule?

POLAR BONDS? Yes. C-F bonds are polar. Large electronegativity difference between C and F

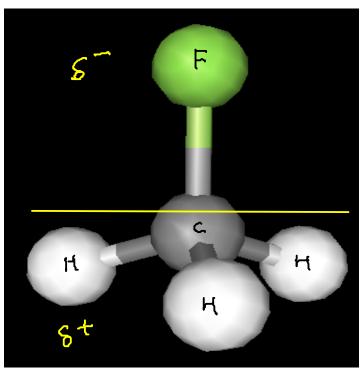
SHAPE? Tetrahedral, with a fluorine at each point. Since the molecule is symmetric, there's no negative "side" or positive "side". This is a NONPOLAR molecule.

Polar molecule?

POLAR BONDS? Yes. C-F bond is polar.. C-H bonds are nonpolar.

SHAPE? Tetrahedral, but since the molecule isn't perfectly symmetrical due to the 3 H atoms and only a single F, this is a POLAR molecule.

Polar molecule?

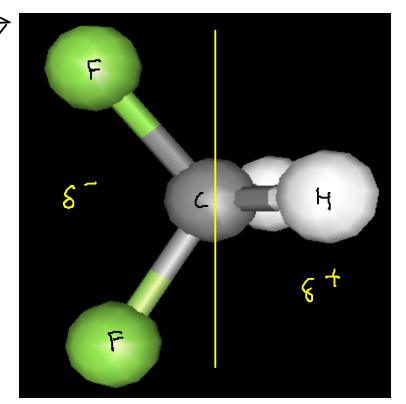

POLAR BONDS? Yes (C-F).

SHAPE? Tetrahedral, with F atoms at two points, and H atoms at the other two. This gives the molecule a hydrogen "side" and a fluorine "side" ... making it POLAR.

Polar molecule?

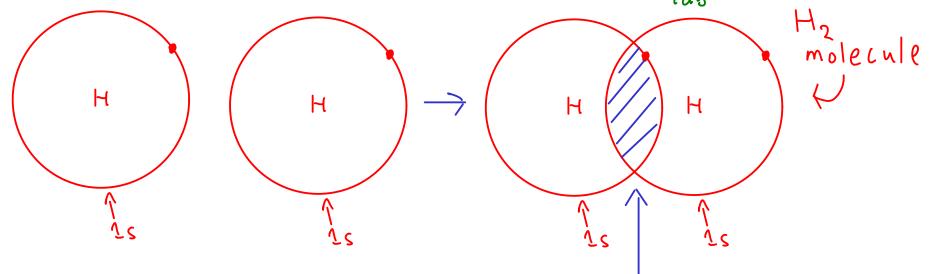
POLAR BONDS? C=O is polar.

SHAPE? LINEAR. The C=O bonds are arranged symmetrically, so this molecule is NONPOLAR.



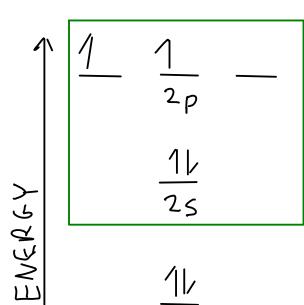
\leftarrow CH₃F "fluoromethane"

Fluorine is able to pull electron density through the molecule, as it is being opposed by much less electronegative hydrogen atoms.


"difluoromethane" $CH_2F_2 \longrightarrow$

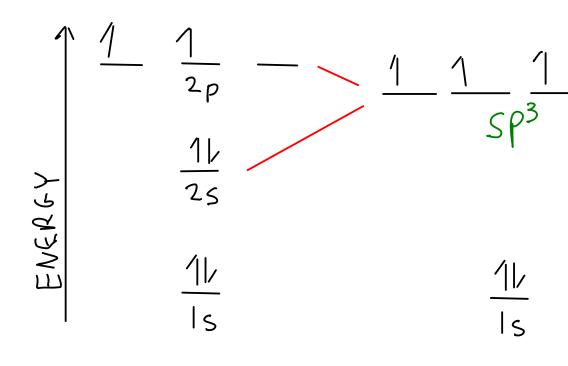
In 2D, the fluorine atoms appear to be on the opposite sides of the H - C - H molecule, but in 3D they are on the same side.

VALENCE BOND THEORY


- an attempt to explain why molecules behave in the way that the VSEPR model predicts.
- Describes the formation of bonds in terms of the OVERLAP of ORBITALS from the bonding atoms.
 - Bonds are formed when two atoms are close enough together so that their ORBITALS OVERLAP (share the same space).
 - Each SET of overlapping orbitals can contain at most a total of TWO electrons. So, two orbitals with one electron each may bond. An orbital with two electrons can only bond with an EMPTY orbital (This is called a COORDINATE COVALENT BOND.) * Ag* with: NH3... the cleanup in the AgCl lab

These 1s orbitals overlap to form what we call a "sigma bond" with overlap BETWEEN the two atomic nuclei.

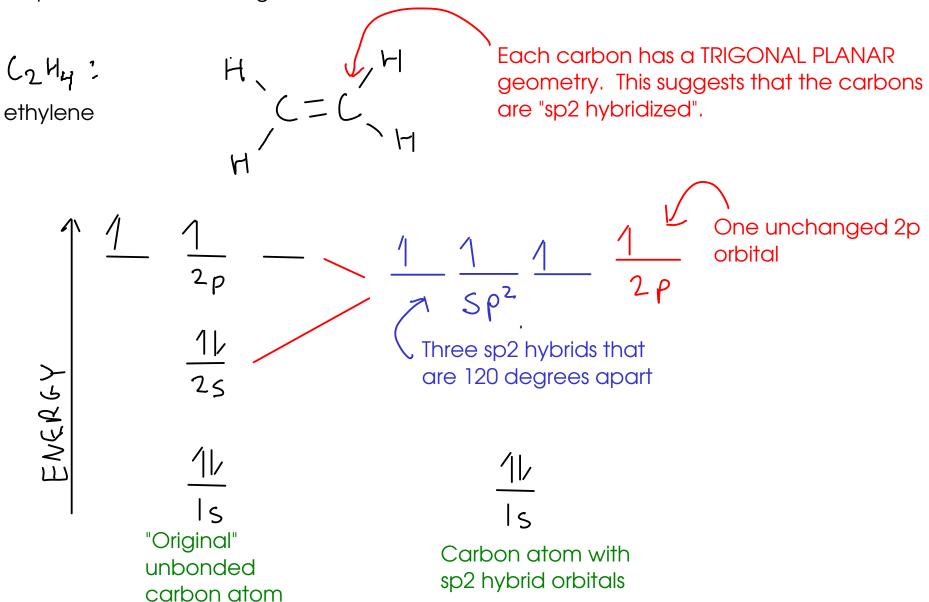
Hybridization

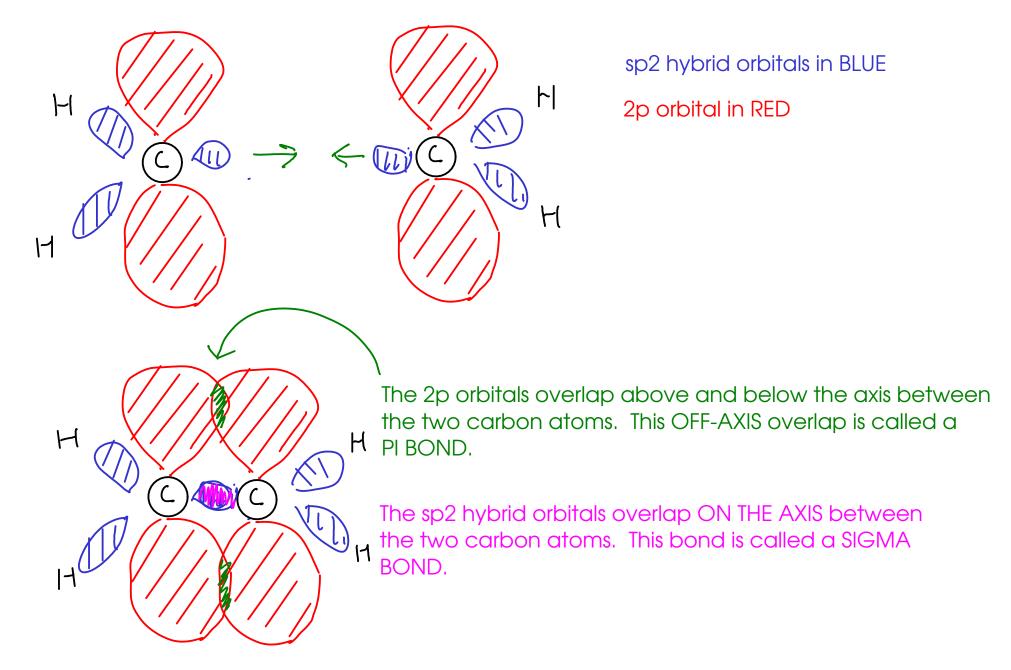

- Look at carbon's electron configuration:

valence

You would expect that carbon would form several different kinds of bonds in a molecule like methane. But, methane's bonds are experimentally all identical. How does carbon form the four equivalent C-H bonds we see in methane?

- In valence bond theory, atomic orbitals can COMBINE to make new orbitals that can then go on to bond with other molecules.
- When orbitals combine to make HYBRID ORBITALS, ...
 - 1 The overall NUMBER OF ORBITALS does not change.
 - The overall NUMBER OF ELECTRONS around the atom does not change
 - The energy of the orbitals is between the energies of the orbitals that combine.


These sp3 orbitals were formed from the combination of carbon's original 2s and 2p orbitals. These orbitals are all identical, and are spread 109.5 degrees apart from one another.


Hybrid orbitals are named from the orbitals that go into making the hybrid. 2s + 3 2p orbitals = "sp3"! p402: picture of hybrids (p401, 10th el)

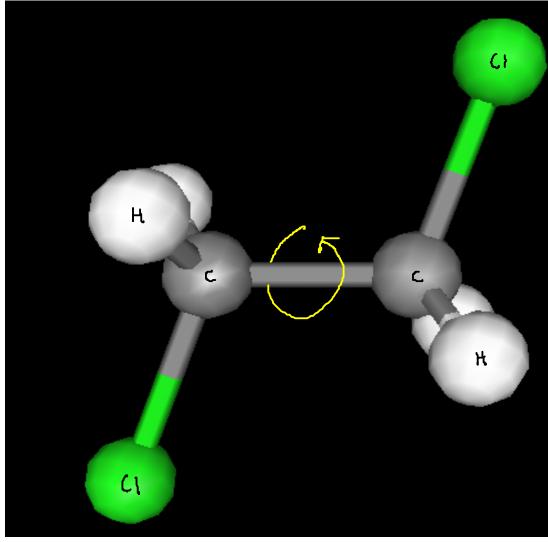
Types of hybrid orbitals:

Hybrid type	Number of orbitals	Molecular shape
sp	2	linear
sp2	3	trigonal planar
sp3	4	tetrahedral (or derivatives)
sp3d	5	trigonal bipyramidal (or derivatives)
sp3d2	6	octahedral (or derivatives)

pHOL: picture of hybrids (pHOI, 10th) - Valence bond theory provides an explanation of multiple (double and triple) bonding that explains some interesting observations about these kinds of bonds.

As you can see, the carbon-carbon double bond in ethylene is made up of TWO DIFFERENT KINDS OF BONDS!

Some notes on sigma and pi bonds:

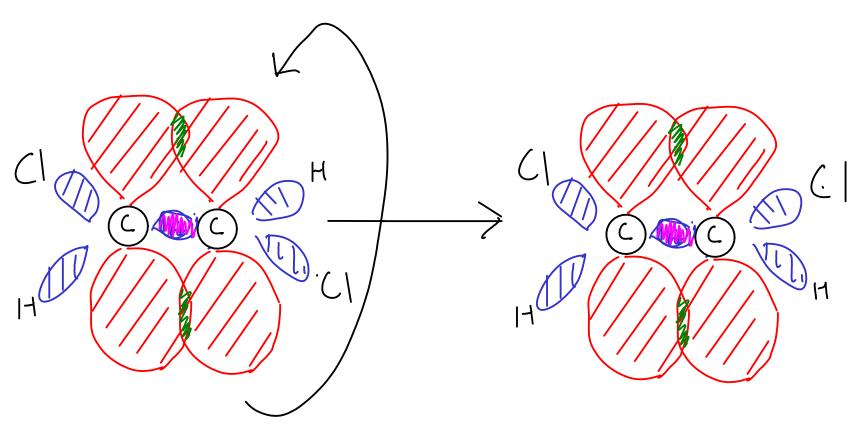

- SIGMA bonds are formed when orbitals overlap along the axis between two atoms. These bonds have good overlap between the bonding orbitals, meaning that they are strong. Single bonds are always sigma bonds. Double and triple bonds contain one sigma bond each.
- PI bonds are formed when off-axis orbitals (usually p orbitals) overlap. Since the overlapping orbitals do not face each other as in the sigma bond, the overlap in pi bonds tends to be poorer than in sigma bonds. As a result, pi bonds tend to be weaker than sigma bonds. Double bonds contain a single pi bond, and triple bonds contain two pi bonds.*
 - ★Experimentally, we observe that the bond energy of the C=C bond is less than the bond energy of two C-C bonds. This suggests that the second bond in a double bond is different from the first!
- Molecules may rotate around SIGMA bonds, since rotation around the axis between two atoms will not affect the overlap and break the bond. Off-axis PI BONDS prevent rotation because rotation would break the pi bond.

- Consider this molecule:
$$(CH_{\chi}CI)_{\chi}$$

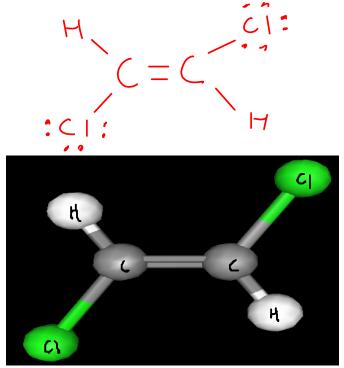
... are these two structures different?

No! The molecule is free to rotate around the C-C single (sigma) bond, and we do not observe two different versions of 1,2-dichloroethane. Both of the forms drawn above are equivalent.

$(CH_2CI)_2$


The molecule is free to rotate about the carbon-carbon bond!

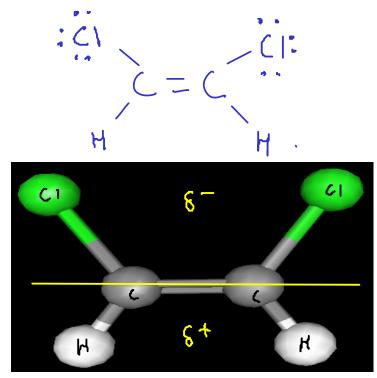
... now consider "1,2-dichloroethene":
$$(CHCI)_2$$


... are these two structures different?

YES! The two carbon atoms in these structures are held together by a DOUBLE BOND, which contains a pi bond. The molecule cannot rotate around the C=C double bond without breaking the pi bond, so the form with the two chlorine atoms on opposite sides cannot freely flip over to the form with the chlorine atoms on the same side.

These two Lewis structures actually represent DIFFERENT MOLECULES. They are called ISOMERS, since they have the same chemical formula but different arrangements of atoms.

For this rotation to take place, the PI BOND must break and then re-form!



trans 1,2-dichloroethene

BOILING POINT: 47.5 C

POLARITY: NONPOLAR (0 D dipole moment)

DENSITY: 1.26 g/mL

cis 1,2-dichloroethene

BOILING POINT: 60.3 C

POLARITY: POLAR (1.9 D dipole moment)

DENSITY: 1.28 g/mL

- * As you can see, some of the properties of these two molecules are very different! The presence of the pi bond (part of the double bond) in each of these molecules means conversion from one form to the other requires a chemical reaction instead of a simple rotation.
- * Double (and triple) bonds prevent rotation and "fix" the structure of a molecule. This is easily explained by valence bond theory!