
WRITING AN IONIC FORMULA

- if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero

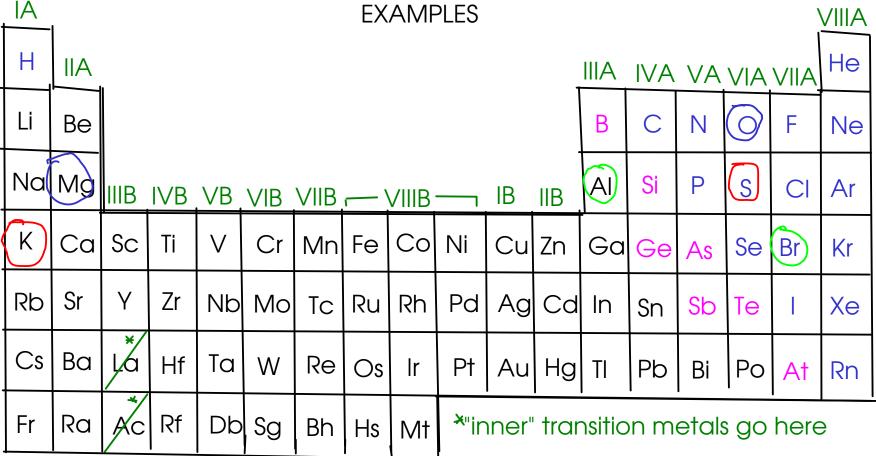
PREDICTING CHARGES

- how do you figure out the charge that an element might take when it becomes an ion?

- for many main group elements, you cah predict the charge using the periodic table!

IA	I																VIIIA
Н	IIA	1									т	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIIB	IVB	VB	VIB	VIIB	· \	VIIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Ļa	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	s go	here)

Elements in group VIIIA - the "noble gases" - do not form ions!


Many OTHER main-group elements form either anions or cations that have the same overall number of electrons as the NEAREST (in terms of atomic number) noble gas!

IA	l				F					N I	VIIIA						
Н	IIA	∎ Yo	u car	relia	bly de	IIIA	IVA	VA		VIIA	He						
Li	Be	me	ethod	for G	roups , VIA,	В	С	N	0	F	vo Ne						
Na	Mg	IIIB	IVB	VB	VIB	VIIB	<u> </u>	VIIIB		IB) IIB	AI	Si	Ρ	S	CI	'& Ar
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	36 Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		<mark>sң</mark> Хе
Cs	Ba	Ļa.	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	s go	here)

Aluminum (AI): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al^{3+}

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br

Strontium (Sr): At atomic number 38, strontium is two electrons away from 2+ krypton. Prediction: Strontium will lose two electrons to form the cation Sr

Find the formulas of:

(1) an ionic compound containing AI and Br
(2) an ionic compound containing Mg and O
(3) an ionic compound containing S and K

A13+ Br-

59

Find the formula of:

* an ionic compound containing AI and Br

Find the formula of: * an ionic compound containing Mg and O

Mg 27 02

Find the formula of:

 $\langle L^{-} | \chi^{\dagger}$

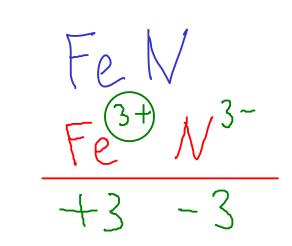
* an ionic compound containing S and K

 ζL^{-}

IA	1	TRANSITION METAL IONS															VIIIA
Н	IIA										-	IIIA	IVA	VA	VIA	VIIA	Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIB	IVB	VB	VIB	VIIB	· \	√IIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	ι,ά	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here)

The transition metals always form CATIONS!

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!


Example: Iron (Fe) forms two cations, depending on the situation: Fe²⁺ or Fe³⁺

TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told

- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

Examples:

* We call this form of iron ion "iron(III)" ... pronounced "iron three". This compound is "iron(III) nitride", because it contains iron ions with a charge of +3

* We call this form of iron ion "iron(II)" ... pronounced "iron two". This compound is "iron(II) nitride", because it contains iron ions with a charge of +2

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS

- Polyatomic ions form ionic compounds in the same way that single-element ions do.

CARBONATE ION Example: 34 * Use paren'thesis when an *Cumpare ionic compound's formula 40 contains more than one of Al202 a polyatomic ion. from A13+ 02-

See the web site or page 63 - table 2.5 (9th ed) or table 2.6 (10th ed) - for a list of common polyatomic ions!

NAMES OF IONS

- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

3 kinds:

 $\widehat{\mathbf{U}}$ Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Mg : "magnesium ion"

/ Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge! Fe : "iron(II) ion" $Cu^{+}: Copper(I) = Cu^{+}: Cu^{+}: Copper(I) = Cu^{+}: Cu$

> 3† Fe : "Iron(III) ion"

(3)

Polyatomic cations

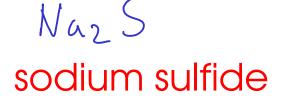
- Memorize list. NH $\frac{1}{4}$: "ammonium ion" ANIONS 2 kinds Main-group nonmetals - Use the STEM NAME of the element, then add "-ide" suffix N³⁻: "nitride" ion P³⁻: "phosphide ion" S²: Sulfide Iun O^{2-} : "oxide ion" F : "fluoride ion" Polyatomic ions

- Memorize list. (see web site)

 $C_2H_3O_2$: "acetate ion" SO_4^2 : "sulfate ion"

NO3 : "nitrate ion"

NO₂: "nitrite ion"


* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second Examples:

Mg (0H)2

magnesium hydroxide

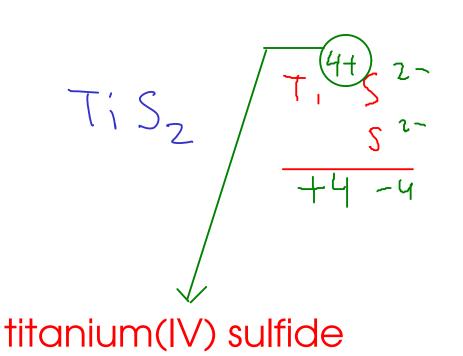
 12^{12} $12^{$

copper(II) oxide

copper(I) oxide

Cu

BeBrz

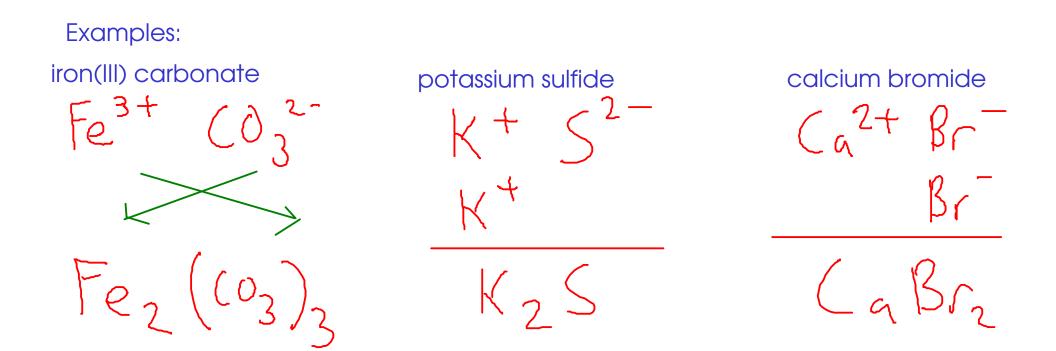

beryllium bromide

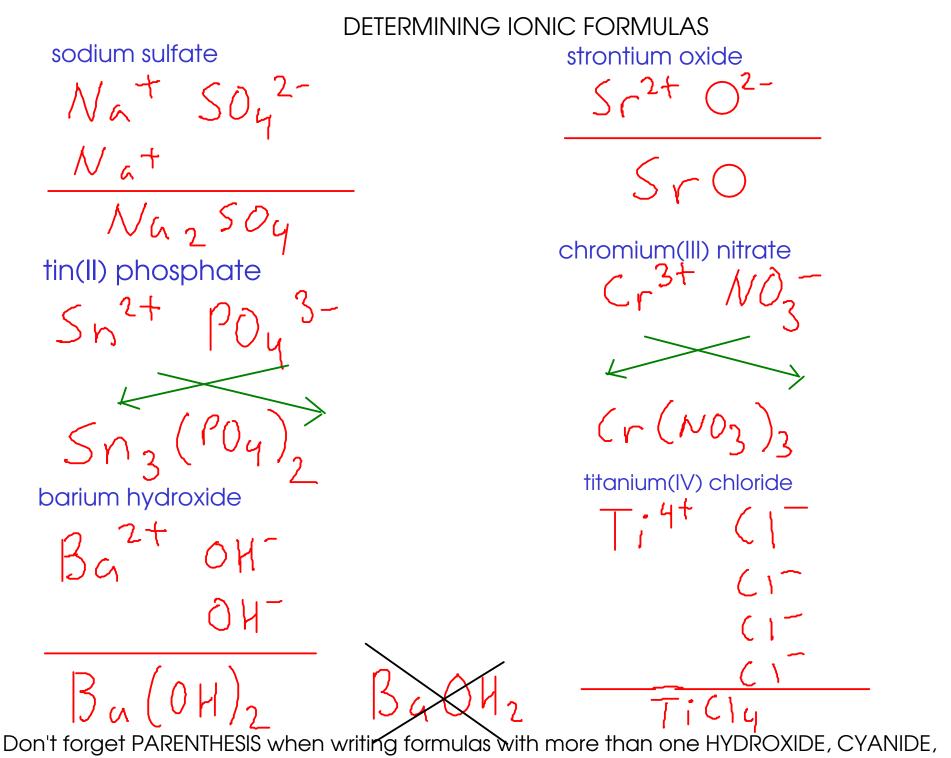
* Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!

Page 63 (9th edition): Chart of polyatomic ions Page 64 (10th edition)

 $(NH_{4})_{2}S$

ammonium sulfide


NAMING IONIC COMPOUNDS $FeCO_3$ (0_3^{2-}) iron(II) carbonate


Baz (PD4)2

barium phosphate Baz Pz Spelling Matters! barium phosphide

68

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

or HYPOCHLORITE ion!

HYDRATES

70

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.

- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

ex:
$$CuSOy \cdot 5H_2O$$

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated