- Exchange reactions involve ions pairing up, but the ions themseves are not formed in exchange reactions. Exchanges start with pre-existing ions.
... but the ions have to be produced somehow - through a chemistry that involves the transfer of electrons.
- oxidation / reduction chemistry ("redox" chemistry) involves transfer of electrons and can make ions.

These are called "half-reactions"

127

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that we learned about in previous courses are redox reactions!
- COMBINATIONS (often but not always redox)
- DECOMPOSITIONS (often redox)
- SINGLE REPLACEMENT (always redox)

$$
\begin{aligned}
& \mathrm{Cu}_{\mathrm{u}}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}_{\mathrm{q}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{aqq}_{q}\right)+2 \mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 e^{-} \text {oxidation } \\
& 2 A_{y}^{+}+2 e^{-} \rightarrow 2 A_{y}(\delta) \text { reduction } \\
& \text { net ionic } \rightarrow C u(s)+2 A_{g}+\left(u_{q}\right) \rightarrow C_{u}{ }^{2+}\left(a_{g}\right)+2 A_{g}(s) \\
& \text { - COMBUSTION } \\
& 2 \mathrm{Mg}_{g}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~m}_{g} \mathrm{O}(s) \\
& 2 m_{g}(s) \rightarrow 2 m_{s}^{2 t}+4 e^{-} \text {oxidation } \\
& \mathrm{O}_{2}(y)+4 e^{-} \longrightarrow 2 \mathrm{O}^{2-} \text { reduction }
\end{aligned}
$$

A review of the reaction types we just mentioned:
(1) COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!
- Form: $\mathrm{A}+\mathrm{B}+\ldots \longrightarrow \mathrm{C}$

Example:

$$
2 \mathrm{Al} \mid(s)+3 \mathrm{Br}_{2}(\mathrm{R}) \longrightarrow 2 \mathrm{Al}^{2} \mathrm{Br}_{3}(\mathrm{~s})
$$

(2) DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products
- Form:

$$
\mathrm{A} \longrightarrow \mathrm{~B}+\mathrm{C}+\ldots
$$

Example:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

* This reaction is NOT a combustion reaction, even though O_{2} is involved!
* Combustion reactions CONSUME O_{2}, while this reaction PRODUCES O_{2}
(3) COMBUSTION REACTIONS
- Reactions of substances with MOLECULAR OXYGEN (O_{2}) to form OXIDES.
- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!
- Form:

$$
\mathrm{AB}+\mathrm{O}_{2} \longrightarrow \mathrm{AO}+\mathrm{BO}
$$

Oxide: a compound containing OXYGEN and one other element!

Examples:

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!
${ }^{*} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}(\mathrm{~g})$

$$
2 \mathrm{mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{mgO}(\mathrm{~s})
$$

This reaction can also be called a combination!
Two reactants form a single product.
(4) SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition) (p153. 10 th ed)
- Form: \square $A+B C \longrightarrow A C+B$ "A" and "B" are elements., often metals.
- Easy to spot, since there is an element "by itself" on each side of the equation.

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.
LAluminum is OXIDIZED during this process. We say that metallic aluminum is a

REDUCING AGENT!
Bromine is REDUCED during this process. We say that bromine is an OXIDIZING
AGENT!

* Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
* Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

END OF CHAPTER 4 MATERIAL

${ }^{34}$ GASES

- Gases differ from the other two phases of matter in many ways:
- They have very low viscosity (resistance to flow), so they flow from one place to another very easily.
- They will take the volume of their container. In other words, gas volumes are variable.
- They are the least dense of all three phases.
- Most gases are transparent, and many are invisible. the mal expansion!
- Gases show a much larger change of volume on heating or cooling than the other phases.
- Gases react to changes in temperature and pressure in a very similar way. This reaction often does not depend on what the gas is actually made of.

KINETIC THEORY

- is a way to explain the behavior of gases.
- views the properties of gases as arising from them being molecules in motion.
- Pressure: force per unit area. Units: Pascal, bar, mm Hg , in Hg , atm, etc.

- According to kinetic theory, pressure is caused by collisions of gas molecules with each other and the walls of the container the gas is in.

${ }^{136}$ - Temperature:
- a measure of the average kinetic energy of the molecules of the gas

$$
E K=\frac{1}{2} m_{\hat{\sim}}^{V^{2}}
$$

- The faster the gas molecules move, the higher the temperature!
- The temperature scales used when working with gases are ABSOLUTE scales.
- ABSOLUTE: scales which have no values less than zero.
- KELVIN: metric absolute temperature scale.

Quick comparison of temperature scales!

$$
K=273.15+{ }^{\circ} \mathrm{C}
$$

212	100	373	
77	25	298	
32	0	273	
-460	-273	0	
Of	${ }^{\circ} \mathrm{C}$	K	

Water boils
Room temperature

Water freezes

Absolute zero!

THE KINETIC PICTURE OF GASES

(1) Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

(2)

Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.

Attractive and repulsive forces between gas
(3) molecules are so small that they can be neglected except in a collision.

- Each gas molecule behaves independently of the others.
(4) Collisions between gas molecules and each other or the walls are ELASTIC.
(5) The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2} \text { True at constant temperature at constant temperature }
\end{aligned}
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1molyas molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} T_{1}}{T_{1}}=\frac{\rho_{2} V_{2}}{T_{2}} \text { if custrort, } 50 \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{1}=3.5 L \\
& T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} \quad T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K} \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \rightarrow \frac{3.5 L}{300.2 \mathrm{~W}}=\frac{V_{2}}{268.2 \mathrm{~W}}, \quad V_{2}=\begin{array}{l}
3.1 \text { inthe } \\
\text { Freezer }
\end{array}
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C, what is the pressure of the gas in the piston?

$$
\begin{aligned}
& \begin{array}{ll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad P_{1} & =1.00 \mathrm{~atm} \\
V_{1} & =2.25 \mathrm{~L} \\
T_{1} & =25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array} \quad \begin{array}{l}
P_{2}=? \\
V_{2}=1.00 \mathrm{~L} \\
T_{2}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{~K}
\end{array} \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{\left(1.00 \operatorname{atm}_{m}\right)(2,25 L)}{(298.2 \mathrm{~K})}=\frac{P_{2}(1.00 L)}{(305,2 \mathrm{~W})} ; P_{2}=2.30 \mathrm{~atm}
\end{aligned}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\begin{aligned}
& \frac{\mathrm{E} \mathrm{O}_{2}}{\mathrm{O}_{2}: 32.00 \mathrm{gO}_{2}=\text { mol } \mathrm{O}_{2}} \quad \begin{array}{l}
* \text { Volume of a } 10^{\prime} \times 10^{\prime} \times 8^{\prime} \\
\text { room }
\end{array} \\
& \hline
\end{aligned}
$$

Use the IDEAL GAS EQUATION to calculate the moles of oxygen gas, then use the FORMULA WEIGHT of oxygen gas to find the mass.

$$
\begin{aligned}
& P V=n R T \\
& \longrightarrow \text { Find the number of moles first ... } \\
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{ll}
P=1.18 \mathrm{~atm} \\
V=22650 \mathrm{~L} \\
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} & R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}\right. \\
& n_{0_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=1092.222357 \mathrm{~mol} 0_{2}
\end{aligned}
$$

Now find the mass ...

$$
1092.222357 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{mul}_{2}}=35 \overline{0} 0 \mathrm{O}_{2} \mathrm{O}_{2}(35.0 \mathrm{~kg})
$$

