- Exchange reactions involve ions pairing up, but the ions themseves are not formed in exchange reactions. Exchanges start with pre-existing ions.
- ... but the ions have to be produced somehow through a chemistry that involves the transfer of electrons.
 - oxidation / reduction chemistry ("redox" chemistry) involves transfer of electrons and can make ions.

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that we learned about in previous courses are redox reactions!
 - COMBINATIONS (often but not always redox)
 - DECOMPOSITIONS (often redox)
 - SINGLE REPLACEMENT (always redox)

Cu (s) +2 Ag NO3 laq)
$$\rightarrow$$
 Cu (NO3)2 (aq) + 2 Ag (s)

Cu \rightarrow Cu²⁺ + 2e⁻ oxidation

2 Ag + 2e⁻ \rightarrow 2 Ag (s) reduction

net ini(\rightarrow Cu(s) + 2 Ag + (aq) \rightarrow (u²⁺(aq) + 2 Ag (s)

-COMBUSTION

2 Mg (s) + O2(g) \rightarrow 2 Mg O(s)

2 Mg (s) \rightarrow 2 Mg²⁺ + He⁻ oxidation

O2 (y) + He⁻ \rightarrow 20²⁻ reduction

A review of the reaction types we just mentioned:

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 <u>DECOMPOSITION REACTIONS</u>

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{1}O_{2}(\ell) \longrightarrow 2 H_{2}O(\ell) + O_{2}(g)$$

- * This reaction is NOT a combustion reaction, even though O_2 is involved!
- * Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.
- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form: AB + 0

$$AB + O_{2} \longrightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Examples:

$$(3 + 8 + 9) + 502(9) \longrightarrow 4 + 20(9) + 3(02(9))$$

$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition) (p153, 10th ed)

- Form: A + BC - AC + B "A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$2\cancel{A}(s) + 3\cancel{B}_{r_2}(l) \longrightarrow 2\cancel{A}(\cancel{B}_{r_3}(s))$$

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Bromine is REDUCED during this process. We say that bromine is an OXIDIZING AGENT!

- * Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
 - * Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

END OF CHAPTER 4 MATERIAL

- Gases differ from the other two phases of matter in many ways:
 - They have very low viscosity (resistance to flow), so they flow from one place to another very easily.
 - They will take the volume of their container. In other words, gas volumes are variable.
 - They are the least dense of all three phases.
 - Most gases are transparent, and many are invisible. thermal expansion!
 - Gases show a much larger change of volume on heating or cooling than the other phases.
 - Gases react to changes in temperature and pressure in a very similar way. This reaction often does not depend on what the gas is actually made of.

KINETIC THEORY

- is a way to explain the behavior of gases.
- views the properties of gases as arising from them being molecules in motion.

- Pressure: force per unit area. Units: Pascal, bar, mm Hg, in Hg, atm, etc.

- According to kinetic theory, pressure is caused by collisions of gas molecules with each other and the walls of the container the gas is in.

136- Temperature:

- a measure of the average kinetic energy of the molecules of the gas

$$\frac{1}{2} \frac{m}{2} \frac{v^2}{\text{velocity}}$$
mass

- The faster the gas molecules move, the higher the temperature!
- The temperature scales used when working with gases are ABSOLUTE scales.
 - ABSOLUTE: scales which have no values less than zero.

- KELVIN: metric absolute temperature scale.

		- KLI	-viiv. Theme de	solute terriperature scale
Quick comparison of temperature scales!			K=273.15+°C	
	212	100	373	Water boils
	$\gamma\gamma$	25	298	Room temperature
	32	O	273	Water freezes
	-460	-273	0	Absolute zero!
	OF	° C	K	

THE KINETIC PICTURE OF GASES

Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

- Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.
- Attractive and repulsive forces between gas molecules are so small that they can be neglected except in a collision.
 - Each gas molecule behaves independently of the others.
- Collisions between gas molecules and each other or the walls are ELASTIC.
- (S) The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$P_1V_1 = constant$$

$$P_2V_2 = constant$$

$$P_1V_1 = P_2V_2$$
True at constant temperature

Charles's Law:

True at constant pressure, and using ABSOLUTE temperature

$$\begin{array}{c|c}
\hline
\end{array}$$

$$\begin{array}{c|c}
\hline
\end{array}$$
True at constant pressure, and using ABSOLUTE temperature using ABSOLUTE temperature

Must use ABSOLUTE temperature units!

Must use ABSOLUTE

temperature units!

Avogadro's law:

- amount (moles) of gas must be constant,

- a mole of any gas at the same conditions has the same volume.

11.1"

Ideal gas law:

... but this constant actually depends on the <u>amount</u> of gas!

Y ('R')

The ideal gas constant.

... combining these together ...

P = pressure atm

V = volume L

T = ABSOLUTE temperature k

R = ideal gas constant

n = number of moles of gas molecules

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C. If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \text{ if constant, so } \frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}$$

$$V_{1} = 3.5L$$

$$V_{1} = 27.0 \text{ of } = 300.2 \text{ K}$$

$$V_{2} = -5.0 \text{ of } = 268.2 \text{ K}$$

$$\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}} \Rightarrow \frac{3.5L}{300.2 \text{ K}} = \frac{V_{2}}{268.2 \text{ K}} \text{ J} \quad V_{2} = \frac{3.1 \text{ L} \text{ in the freezer}}{\text{freezer}}$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to

31.0 C, what is the pressure of the gas in the piston?

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \quad P_{1} = 1.00 \text{ atm}$$

$$V_{1} = 2.25 L$$

$$V_{2} = 1.00 L$$

$$T_{1} = 25.0^{\circ} (=298.2 \text{ k}) \quad T_{2} = 31.0^{\circ} (=304.2 \text{ k})$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{(1.00 \text{ atm})(2.25 \text{ L})}{(298.2 \text{ K})} = \frac{P_2 (1.00 \text{ L})}{(304.2 \text{ K})}; P_2 = 2.30 \text{ atm}$$

Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure.

≯Volume of a 10'x10'x8' room

Use the IDEAL GAS EQUATION to calculate the moles of oxygen gas, then use the FORMULA WEIGHT of oxygen gas to find the mass.

PV =
$$nRT$$

Find the number of moles first ...
 $P=1.18atm$ $R=0.08206 \frac{L\cdot atm}{mol\cdot k}$
 $N=PV$ $V=22650L$
 RT $T=25.0°C=298.2k$

$$N_{02} = \frac{(1.18 \text{ atm})(22650 \text{ L})}{(0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}})(298.2 \text{ K})} = 1092.212357 \text{ mol} 0_2$$

Now find the mass ...

$$1092.212357 \text{ mol } 0_2 \times \frac{3200902}{\text{mol } 0_2} = \overline{35000902} (35.0 \text{ kg})$$