Tools for chemical calculations

To relate and, use ...	Chapter3
MASS	MOLES	FORMULA WEIGHT	
MOLES OF SUBSTANCE	MOLES OF DIFFERENT SUBSTANCE	BALANCED CHEMICAL EQUATION	
VOLUME OF SOLUTION	MOLES	MOLAR CONCENTRATION	Chapter 4
VOLUME OF GAS	MOLES	IDEAL GAS EQUATION	$\begin{aligned} & \text { Chapter } \\ & 5 \end{aligned}$
ENTHALPY CHANGE	MOLES	BALANCED THERMOCHEMICAL EQUATION	Chapter 6

MOST chemical calculations follow this pattern:

1) Convert AMOUNT of given substance (mass, volume, etc.) to MOLES
2) Convert MOLES given substance to MOLES desired substance
3) Convert MOLES desired substance to AMOUNT

FORMULA WEIGHT
To calculate the formula weight of a compound, add up the atomic weights of all atoms in the compound:

$$
\begin{aligned}
& \operatorname{Ca}(\mathrm{OH})_{2}: \quad C_{a}: 1 \times 40.08 \\
& O: 2 \times 16.00 \\
& H: \frac{2 \times 1.008}{74.096} \mathrm{~g}\left(\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{mol}_{\mathrm{O}} \operatorname{Ca}(\mathrm{OH})_{2}\right.
\end{aligned}
$$

Use the formula weight as a conversion factor to relate mass and moles. The formula weight is the number of grams of a compound equivalent to one mole of the compound.

How many moles of calcium hydroxide are there in 36.0 grams calcium hydroxide?

$$
36.0 \mathrm{~g}\left(\mathrm{a}(\mathrm{OH})_{2} \times \frac{\mathrm{mol}\left(\mathrm{a}(\mathrm{OH})_{2}\right.}{74.096 \mathrm{~g}\left(\mathrm{a}(\mathrm{OH})_{2}\right.}=0.486 \mathrm{~g}\left(\mathrm{a}(\mathrm{OH})_{2}\right.\right.
$$

BALANCED CHEMICAL EQUATION
Use a balanced chemical equation to relate moles of one substance to moles of a different substance.

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

The coefficients of the equation relate moles of one substance to moles of another. If a substance has no written coefficent, assume one mole.

$$
\operatorname{mol} \mathrm{Cl}_{2}=2 \operatorname{mol} \mathrm{NaCl}
$$

How many moles of sodium chloride can be produced from 0.750 moles of chlorine gas?

$$
0.750 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{\mathrm{~mol} \mathrm{Cl}} 2 \mathrm{~L} \quad 1.50 \mathrm{mul} \mathrm{NaCl}
$$

MOLAR CONCENTRATION
Use a solution's molar concentration to relate volume in liters to moles. The molar concentration is equal to the number of moles in one liter of a solution.

$$
\begin{aligned}
& 3.00 \mathrm{M} \mathrm{HCl} \\
& 3.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}
\end{aligned}
$$

Sometimes, you will need to convert a solution's volume from milliliters to liters before using molar concentration, since most solution volumes in the lab are in milliliters.

How many moles of HCl are present in 45.0 mL of 3.00 M HCl ?

$$
\begin{aligned}
& m L=10^{-3 L} \\
& 45.0 \mathrm{~mL} \times \frac{10^{-3} L}{m L} \times \frac{3.00 \mathrm{~mol} \mathrm{HCl}}{L}=0.135 \mathrm{mo} 1 \mathrm{HCl}
\end{aligned}
$$

IDEAL GAS EQUATION
Use the ideal gas equation to relate gas conditions to moles. Usually, the amount of gas will be given in volume units (liters).

$$
P V=n R T
$$

Rearrange the ideal gas equation to solve for the value you're trying to calculate.

$$
n=\frac{P V}{R T}
$$

To use the ideal gas equation, units for P, V, and T must match the units of the constant, R .

How many moles of oxygen gas are there in 12.3 L at 25.0 C and 0.950 atm ?

$$
\begin{gathered}
P=0,950 \text { arm } \quad V=12.3 \mathrm{~L} \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{ar}}{\mathrm{~mol} \cdot \mathrm{k}} \quad T=25.00 \mathrm{C}=298.2 \mathrm{k} \\
n=\frac{(0.950 \mathrm{arm})(12.3 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Larm}}{\mathrm{~mol}_{\mathrm{m}} \cdot \mathrm{k}}\right)(298.2 \mathrm{k})}=0.478 \mathrm{~mol} \mathrm{O}_{2}
\end{gathered}
$$

BALANCED THERMOCHEMICAL EQUATION
Use a balanced thermochemical equation to relate the enthalpy change (or heat at constant pressure) to moles of a substance.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-906 \mathrm{~kJ}
$$

Treat the enthalpy/heat as if it is just another product of the reaction.

$$
4 \mathrm{molNH}=-906 \mathrm{~kJ}
$$

How many moles of ammonia must be burned to release 1550 kJ of heat at constant pressure?

$$
-1550 \mathrm{~kJ} \times \frac{4 \mathrm{~mol} \mathrm{NH}}{3}-906 \mathrm{~kJ} \quad 6.84 \mathrm{~mol} \mathrm{NH}_{3}
$$

