CHM 110 -Heat Practice Set
 SOLUTIONS

Solve the problems.

1) If 1.54 L of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ at $25^{\circ} \mathrm{C}$ and 1.00 atm is burned, how much heat is evolved?

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \quad \Delta \mathrm{H}=-5760 \mathrm{~kJ}
$$

- $\quad 181$ \qquad kJ heat evolved.

Complete solution:
First, use $\mathrm{PV}=\mathrm{nRT}$ to find the moles of butane reacted.

$$
\begin{array}{lrl}
\begin{array}{l}
\mathrm{P}=1.00 \mathrm{~atm} \\
\mathrm{~V}=1.54 \mathrm{~L}
\end{array} & \mathrm{n}=? \\
\mathrm{~T} & =25^{\circ} \mathrm{C}=298 \mathrm{~K} \\
& \mathrm{n}=\frac{(1 \mathrm{~atm}) \times(1.54 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \times(298 \mathrm{~K})} & =0.06297569 \mathrm{molC}_{4} \mathrm{H}_{10}
\end{array}
$$

Next, use the thermochemical equation to find the heat (enthalpy change).

$$
0.06297569 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \times \frac{-5760 \mathrm{~kJ}}{2 \mathrm{molC}_{4} \mathrm{H}_{10}}=-181 \mathrm{~kJ}
$$

Note: Since the word "evolved" implies the process is exothermic (heat is leaving the system), we say that the "heat evolved" is 181 kJ . The enthalpy change for the process is -181 kJ.

CHM 110 - Heat Practice Set - Answers
2) If 2.57 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$ is reacted with water, how much heat is evolved?

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{NaOH}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) ; \quad \Delta \mathrm{H}=-287 \mathrm{~kJ}
$$

- $\quad 4.73$ kJ heat evolved.

Complete solution:
Find the number of moles of sodium peroxide using the formula weight of sodium peroxide, then find heat using stoichiometry.

$$
2.57 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}}{77.98 \mathrm{~g}} \times \frac{-287 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{O}_{2}}=-4.73 \mathrm{~kJ}
$$

Note: As in problem \#1, this one asks us about heat evolved, so we report 4.73 kJ as our answer. The enthalpy change for the process is -4.73 kJ .
3) Calculate (from heats of formation) the enthalpy change for the following reaction:

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \quad \Delta \mathrm{H}=?
$$

- $\Delta \mathrm{H}=\ldots \underline{202.4}$ \qquad kJ

Complete solution:
Use Hess's Law to find the enthalpy change. Find standard enthalpies of formation in the back of your textbook or via the Internet. Be careful; make sure the phase labels on your enthalpies of formation match the ones in the chemical equation.

| Reactants | Products |
| :---: | :---: | :---: |
| $\mathrm{Cl}_{2}(\mathrm{~g}) ; \quad \Delta \mathrm{H}_{\mathrm{f}}=0 \mathrm{~kJ} / \mathrm{mol}$ | $\mathrm{HCl}(\mathrm{g}) ; \quad \Delta \mathrm{H}_{\mathrm{f}}=-92.3 \mathrm{~kJ} / \mathrm{mol}$ |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \quad \Delta \mathrm{H}_{\mathrm{f}} \quad=-285.8 \mathrm{~kJ} / \mathrm{mol}$ | $\mathrm{O}_{2}(\mathrm{~g}) ; \quad \Delta \mathrm{H}_{\mathrm{f}}=0 \mathrm{~kJ} / \mathrm{mol}$ |

Reactants: $\quad 2 \times(0 \mathrm{~kJ})+2 \times(-285.8 \mathrm{~kJ})=-571.6 \mathrm{~kJ}$
Products: $\quad 4 \times(-92.3 \mathrm{~kJ})+1 \times(0 \mathrm{~kJ})=-369.2 \mathrm{~kJ}$
Reaction $=$ Products - Reactants $=202.4 \mathrm{~kJ}$

