CHM 110 Heat Practice Set SOLUTIONS

Solve the following problems Write the answer in the answer blank, and show work in the space provided.

1) Using standard enthalpies of formation (see your textbook), calculate the enthalpy change ΔH° for the reaction below, as written: -74.87 0 -110.5 0 2CH₄(g) + O₂(g) \rightarrow 2CO(g) + 4H₂(g) Answer: $\Delta H^{\circ} = -7/3$ kJ $\Delta H^{\circ} = \left[2(-110.5) + 4(0) \right] - \left[2(-74.6) \right] + 1(0) \right]$ 2 - 71.26 kJ 2) A 1.50 kg block of iron cools from a temperature of 100.0 °C to 23.5 °C. Calculate the heat, Q, associated with this change. Assume the specific heat of iron is $0.449 \frac{J}{g \cdot {}^{o}C}$ Answer: $Q = \frac{-51500}{Q} J$ $Q = 1500 g \times 0.449 \frac{5}{900} \times (23.5^{\circ}(-100.0^{\circ}L))$ - - 51522,753

3) What is the enthalpy change on burning 175 g of ammonia, NH₃, in the following reaction?
17.034
4NH₄(g) + 3O₂(g)
$$\rightarrow$$
 2N₂(g) + 6H₂O(g); $\Delta II = -1267$ kJ
Answer: $= 32.50$ kJ
17.034 g NH₃ = mol NH₃ 4 mol NH₃ = -1267 kJ
17.5 g NH₃ x $\frac{mol NH_3}{17,034 g}$ x $\frac{-1267 kJ}{4 mol NH_3} = -32.54.153454 kJ$
4) What volume of hydrogen gas at 125 °C and 1.05 atm pressure would be required to provide 1550
kJ of heat via the following reaction?
4) What volume of hydrogen gas at 125 °C and 1.05 atm pressure would be required to provide 1550
kJ of heat via the following reaction?
4) What volume of hydrogen gas at 125 °C and 1.05 atm pressure would be required to provide 1550
kJ of heat via the following reaction?
4) What volume of hydrogen gas at 125 °C and 1.05 atm pressure would be required to provide 1550
kJ of heat via the following reaction?
4) What volume of hydrogen gas at 125 °C and 1.05 atm pressure would be required to provide 1550
kJ of heat via the following reaction?
4) So for $X = \frac{2H_3(g) + O_3(g) \rightarrow 2H_2O(g)}{100}; \Delta H = -484 kJ$
Answer: $\frac{| 9 q }{1 H_2}$ LH₂
 $2 m_0 1 K_2 = -484 kJ$
 $-1550 kT_3 \times \frac{2 mol K_2}{-484 kJ} = 6.404958678 mol H_2$ T = 125 °C = 398 k/
 $R_1 = 0.08206 \frac{1-6 hm}{mol+kf}$ P = 1.05 ehrom
 $V = \frac{(6.404958678 mol H_2)(0.08206 \frac{1-6 hm}{mol+kf})(398 k)}{(1.05 ehrom)}$
 $= 199.223982684 L H_2$