$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed by the salt to see if they're acidic, basic, or neutral:
$N_{G}+$. Not a B-L acid, since it has no H+ to donate. Not likely to be a B-L base pH)

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
$$

$$
\begin{aligned}
& S_{0} K_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=? \begin{array}{l}
\text { Kb for acetate ion isn't in our chart on } \\
\text { page A-14, but on the previous page } \\
\text { we can find the Ka for its } \\
\text { conjugate - acetic acid. }
\end{array} \\
& K_{\mathrm{K}_{1} H \mathrm{H}_{2} H_{3} \mathrm{O}_{2}=1.7 \times 10^{-5}}^{K_{a} \times W_{3}=1.0 \times 10^{-14}} \begin{aligned}
\mathrm{SO}_{6} & =\frac{1.0 \times 10^{-14}}{1.7 \times 10^{-5}} \\
h_{b} & =5.88 \times 10^{-10}
\end{aligned}
\end{aligned}
$$

166

$$
\begin{aligned}
& k_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10} \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
\end{aligned}
$$

Species	$[$ In, tin $]$	Δ	$\left[E_{\text {quail }}\right]$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+x$	x
OHH^{-}	0	$+x$	x
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	0.100	$-x$	0.100^{-x}
x^{2}			

Remember ... we want pH , but this number is

$$
\left.\left.\begin{array}{l|l}
\begin{array}{l}
x<C 0.100 \\
0.100-x
\end{array} 0.100 & \begin{array}{l}
x^{2} \\
0.100 \\
\end{array} 5.88 \times 10^{-10}
\end{array} \right\rvert\, \begin{array}{ll}
\text { HYDRXIDE COncentration } \\
\text { OOH }=-\log _{10}\left(7,67 \times 10^{-9}\right)
\end{array}\right)
$$

For comparison:
0.100 M sodium acepate, $\mathrm{pH}=8.88$
0.100 M ammonia, $\mathrm{pH}=11.13$
0.100 M NaOH (strong base), $\mathrm{pH}=13.00$

The acetate ion is basic, but it's a very weak base!

168

$$
\begin{aligned}
& \text { O. } 100 \mathrm{MNaCl} \text {, Find } \mathrm{pH} \\
& \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed by the salt:
$\Lambda+$, Not a B-L acid, since it has no H+ to donate. Not likely to be a B-L base either due to its positive charge. Sodium ion should be neutral (no effect on $\mathrm{pH})$

C1. '. Not a B-L acid, but might be a B-L base due to its negative charge.

$$
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \stackrel{\mathrm{HCl}}{I_{- \text {This is hydrochloric }}}+\mathrm{OH}^{-}
$$

This is hydrochloric acid ... a STRONG ACID. It completely ionizas in water (it's unstable), so that means that chloride ion is NOT able to act as a B-L base in water!

Since neither ion has acidic or basic properties, the pH is set by the water equilibrium, and the solution has a pH of 7.00

169 POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a 3}=4.8 \times 10^{-13}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}_{1}=6.9 \times 10^{-3} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	[Initial]	D	[Equilibrium]
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.20-x$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
x^{2}			

$$
\left.\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \begin{array}{l}
\text { This time, we'll solve the quadratic equation. We're not quite } \\
\text { as confident that ' } x \text { '< }<0.10 \text { as we were in previous examples. } \\
\text { (The equilibrium constant is a good bit larger here!) }
\end{array} \\
& x^{2}=0.00069-0.0069 x
\end{aligned} \right\rvert\, \begin{aligned}
& x=\frac{-0.0069 \pm 0.0529868852}{2} \\
& x^{2}+0.0069 x-0.00069=0
\end{aligned}
$$

$$
\begin{gathered}
x^{2}=0.00069-0.0069 x \\
x^{2}+0.0069 x-0.00069=0 \\
a=1 \quad b=0.0069 \quad c=-0.00069 \\
x=\frac{-0.0009 \pm \sqrt{(0.0069)^{2}-4(1)(-0.00069)}}{2(1)}
\end{gathered}
$$

Discard the negative root. 'x' cant be less than zero (it's equal to two of the concentrations!)

$$
\begin{aligned}
& \text { concentrations! } \\
& x=0.0230=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=1.64
\end{aligned}
$$

${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate (FW=80.052 g/mol) solid into enough water to make 250. mL of solution.
Find out the nature of the salt ... acid, base, neutral?

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}
$$

$$
\begin{aligned}
& \mathrm{NO}_{3}^{-}: \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is strong } \\
\text { (unstable), so NITRATE } \\
\text { should be NEUTRAL }
\end{array}
\end{aligned}
$$ ion:

$$
\begin{aligned}
& 3.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \text { in } 250 . \mathrm{mL} \text {, or } 0.250 \mathrm{~L} \text { solution } \\
& 3.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\text { mil NH4NO3 }}{80.0 \mathrm{~N}_{4} \mathrm{gNH}_{4} \mathrm{NO}_{3}}=0.0374756408 \mathrm{mul} \mathrm{NH} y_{y} \mathrm{NO}_{3} \\
& {\left[\mathrm{WH}_{4}{ }^{+}\right]_{\text {nuninal }}=\frac{0.0374756408 \mathrm{mul} \mathrm{NHyNO}}{0.250 \mathrm{~L}}=0.14990 \mathrm{M}}
\end{aligned}
$$

172

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{4}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}
\end{aligned}
$$

Species	[Initial $]$	Δ	$\left[F_{\text {quill }}\right]$
NH_{3}	0	$+x$	x
$\mathrm{H}_{3} \mathrm{o}^{+}$	0	$+x$	x
$\mathrm{NH}_{4}{ }^{+}$	0.14990	$-x$	$0.14990-x$

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-y}=5.56 \times 10^{-10} \\
& \begin{array}{l}
\left\{\begin{array}{l}
x \ll 0.14990 \\
v .44990-x \approx 0.3499 \\
\frac{x^{2}}{0.14990}=5.56 \times 10^{-10}
\end{array}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{PH}=5.04
\end{aligned}
$$

This pH seems reasonable for a weakly acidic salt...

THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ss}) \rightarrow \mathrm{NH}_{4}{ }^{+}\left(\mathrm{aqq}_{q}\right)+\mathrm{Cl}^{-}(\mathrm{aq})$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} ; \mathrm{K}_{6}=1.8 \times 10^{-5}
$$

Species	[Ind $]$	D	$\left[G_{\text {quill }}\right]$
NH_{4}^{+}	0.10	$+x$	$0.10+x$
OH^{-}	0	$+x$	x
NH_{3}	0,10	$-x$	$0,10-x$

$$
\begin{gathered}
\frac{(0.10+x)(x)}{(0.10-x)}=1.8 \times 10^{-5} \\
\begin{array}{c}
\text { Assume } x<L 0.10 \\
0.10-4 \approx 0.10 \\
0.10+x \approx 0.10 \\
\frac{0.10 x}{0.10}=1.8 \times 10-5
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& x=1,8 \times 10^{-5}=\left[\mathrm{OH}^{-}\right] \\
& p O 4=-\log _{10}\left(1,8 \times 10^{-5}\right)=4.74 \\
& p H=9.26
\end{aligned}
$$

The common-ion effect suppresses the ionization of the ammonia, resulting in a lower pH relative to the 0.10 M ammonia solution.

BUFFERS

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{gathered}
H A+H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

(1) Take log of both sides
(2) Multiply by - 1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$[A-] \ldots$ from the salt $[H A] \ldots$ from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

