150
Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{Na}_{2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4 . \mathrm{S} \times 10^{-4}
\end{aligned}
$$

Found on page

What is the pH of the solution?

A-14 in Ebbing
10th edition. These K values are determined experimentally like other equilibrium constants.

To find pH , we need to determine the concentration of HYDRONIUM ION at equilibrium, but (unlike the strong acid case) we can't assume all the acid ionizes. We need to solve the equilibrium expression of the acid.

Species	[In ,tin]	Δ	$[$ Equilibrium $]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
NO_{2}^{-}	0	$+X$	X
$H \mathrm{NO}_{2}$	0.100	$-X$	$0,100-x$

$$
\frac{(x)(x)}{(0.100-y)}=4.5 \times 10^{-4}
$$

Look familiar? This is very similar to the equilibrium problems from Chapter 14!

$$
\begin{aligned}
\frac{(x)(x)}{(0.100-x)} & =4.5 \times 10^{-4} \\
\frac{x^{2}}{0.100-x} & =4.5 \times 10^{-4}
\end{aligned}
$$

This is a quadratic, We can solve it with the quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Ka is small, so there's only a small fraction of acid that ionizes. That means ' x ' is small compared to the molarity of the acid. If ' x ' is small relative to 0.1 , then ...

$$
0.100-y \approx 0.100
$$

When is it safe to assume x is small enough to drop from the subtraction term? When the initial concentration is 1000 x or more larger than the value of Ka or Kb !

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a stop acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}- \\
\mathrm{O}_{2} 10 \mathrm{MHNO},\left[\mathrm{H}_{3} \mathrm{OH}^{+}\right]=0.10 \\
\mathrm{PH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{153}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5} \quad(p \mathrm{~A}-14 \text {, Ebbing } 9 \text { 㗐 })
$$

What is the pH ?

$$
\left.\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \mathrm{CNH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{3}\right] \quad=1.8 \times 10^{-5}
$$

We need to solve this expression for HYDROXIDE concentration, since HYDROXIDE is the only term in this equilibrium that relates to HYDRONIUM ...

Species	$\left[I_{\text {filial }}\right]$	Δ	$\left[E_{\text {quilibrium }}^{\text {HYDRONIUM } \ldots .}\right.$
NH_{4}^{+}	0	$+x$	X
OH^{-}	0	$+X$	x
NH_{3}	0.100	$-x$	$0.100-x$
$\frac{(x)(x)}{0.100-x}=1.8 \times 10^{-5}$			

154

$$
\underline{(X)(X)}=1.8 \times 10^{-5} \begin{aligned}
& \text { This is a quadratic equation, but we can simplify it } \\
& \text { IF } x \text { is small compared to } 0.100 \ldots
\end{aligned}
$$

$$
\text { IF } \mathrm{x} \text { is small compared to } 0.100 \ldots
$$

$$
\frac{x^{2}}{0.100-y}=1.8 \times 10^{-5}
$$

$$
x \ll 0.100,500.100-y \approx 0.100
$$

$$
\frac{x^{2}}{0.100}=1.8 \times 10^{-5}
$$

Be careful! We have calculated pOH (the negative log of the HYDROXIDE concentration).

$$
x^{2}=1.8 \times 10^{-6}
$$ We need to CONVERT it to $\mathrm{pH}!$

$$
x=0.0013416408=[0 H]
$$

$$
P O H=2.87
$$

$$
S_{\text {inge } p H+p U H}=14,00
$$

PH =11.13
(If you'f solved this with the quadratic formula, you'd have gotten pH of 11.13 ... same as we got with the assumption!)

155
Compare pH to the pH of an 0.100 M solution of the strong base NaOH :

$$
\begin{aligned}
& \mathrm{pH}_{1 \mathrm{NH}_{3}}=11.13 \\
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So, } 0.100 \mathrm{M} \mathrm{NaOH} \text { has }\left[\mathrm{OH}^{-}\right]=0,100 \\
& \mathrm{POH}=-\log _{10}(.100)=1.00 \\
& \quad \mathrm{PH}=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)

